极性在具有强电子偶联的凝结物质系统中普遍存在。极性的绝热性与其传输特性和空间范围有关。迄今为止,仅在光激发后才测量绝热的小极极形成。晶格的重组能量足够大,以至于第一个电子 - 光学声子散射事件会产生一个小极极子,而无需大量的载体热融化。我们测量在稀土原氧化物Erfeo 3中以铁为中心的八面体的挫败导致抗脱绝热极性的形成。通过瞬态极端紫外线光谱法测量相邻的Fe 3 +位置之间的相干电荷跳跃,并持续几次粉红色。重新构成的小极极形成时间比以前的测量值长,即使在激发态下也表明浅势良好。结果强调了考虑动态电子电子相关性的重要性,而不仅仅是电子 - phonon诱导的晶格变化,用于转交,催化和光激发应用的小极地。
摘要 - 随着异质整合的发展,结合多个功能的设备的多样性和密度已显着增加。随后的功率使用情况和组件尺寸减小,特别是中央加工单元(CPU)的尺寸凸显了传统冷却的局限性,并揭示了对热管理的显着改善的必要性。在这项研究中,将提出一种创新的流体热冷却溶液,该溶液将提出CPU包装中高密度和非均匀散热的解决方案。解决方案设计包括喷射撞击,用于同时直接冷却四个电子芯片以及芯片连接的微引脚鳍。使用选择性激光熔化(SLM),铜微销鳍已在硅芯片的表面上加在一起制造,从而消除了对热界面材料(TIMS)的需求。在数值上研究了喷射喷嘴尺寸和喷射到芯片距离对传热和流体流量的影响。提出的解决方案显示出具有较低水平的系统复杂性和较低开销的较低的冷却剂和制造的较低水平的潜力。据作者所知,在单相冷却研究区域中,热电阻结果是报告的最低(0.015 k/w)。
摘要 - 在下肢假体中,插座构成的物理接口是设备成功的关键组件。这项工作提出了一种基于集成到有机硅结构中的刚性框架的新设计,该框架可以与残留的肢体建立更舒适的生物力学耦合,并促进智能技术的整合。这为假肢双向接口或用户健康监控的新可能性铺平了道路。因此,已将四个表面EMG传感器,三个纤维状效应单元和九个温度和湿度传感器整合到插座中。这些组件可以使用户的电动机意图解码,提供增强反馈,并在佩戴假体时测量残留的肢体热条件。在具有转截肢截肢的partecipant上测试了新插座。在电路训练中的五个不同任务中注册了SEMG信号,并且发现意图解码算法的分类中位数始终高于73%。通过心理物理实验评估了用户对颤振反馈的感知,并揭示了奇异活化单元的振动是最好的感知。问卷调查结果确认
客机客舱是一个狭窄而封闭的空间,通常人口密度很高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了相当大的努力(Pang et al. 2014)。有几种方法可以用来研究这类区域的热舒适度。在一些研究中,使用了著名的预测平均投票 (PMV) 模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学 (CFD) 来预测局部皮肤温度并计算热舒适度。Cui et al.(2014)在飞机客舱内进行了现场测量,以绘制空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热环境并不满意,因为他们感觉很热。热舒适度图表现出不均匀性;中舱的温度始终较高。但是,据报道,垂直温度梯度以及空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。得出的结论是,模拟舱内的整体热感觉
为了利用地热能的巨大潜力,需要在液压上刺激低渗透性的晶体热岩石,以创建增强的地热系统(EGS),以实现经济上有利可图的流体流量。然而,液压刺激通常与地震活性有关,这在某些情况下导致项目取消。为了提高我们对注射和注入后阶段刺激的耦合水力机械(HM)过程的理解(关闭后),我们用数值分析了三种不同的刺激方案:恒定速率,步骤速率和循环注入,并在封闭后且在循环方案之间进行均匀的情况下和无损坏。仿真结果表明,注射方案对断裂的HM响应的影响高于注入水的总体积,这些水质量缩放定律将注射体积与诱导地震的预期最大幅度相关联。最大化渗透性增强之间的权衡,而最大程度地减少诱导地震性并不是一件直接的。尤其是在注射限制后的孔隙释放诱导的地震性,但以限制渗透性增强的费用。在考虑刺激单个断层时,所有方案都会产生可比的滑动速率,从而产生诱导地震的大小,而恒定率注射是最快的诱导最大地震。HM对液压刺激的响应的微小差异不允许确定比其他方案更好的方案。
数字光处理 (DLP) 是一种基于大桶光聚合的 3D 打印技术,可制造通常由化学交联聚合物制成的部件。快速增长的 DLP 市场对聚合物原材料的需求不断增加,同时人们对环境的关注也日益增加。因此,使用闭环可回收墨水进行循环 DLP 打印对于可持续发展至关重要。低温烷基取代的 𝜹 -戊内酯 (VL) 是一种工业上可获得的生物可再生原料,用于开发可回收聚合物。在这项工作中,通过 VL 的开环酯交换聚合合成的丙烯酸酯官能化聚(𝜹 -戊内酯)(PVLA)被用作平台光前体,以提高 DLP 打印中的化学循环性。一小部分光固化反应性稀释剂 (RD) 将不可打印的 PVLA 转变为 DLP 可打印墨水。各种光固化单体可用作 RD,以调节印刷结构的特性,用于牺牲模具、软致动器、传感器等应用。无论印刷聚合物是热塑性还是热固性,PVLA 的固有可解聚性都得到很好的保留。通过印刷结构的直接本体热解,原始质量 VL 单体的回收率为 93%。这项工作提出了可解聚光前体的利用,并强调了生物可再生 VL 作为循环 DLP 打印的多功能材料平台的可行性。
多组分4CMENB疫苗Bexsero用于对付英国婴儿疫苗接种时间表的一部分。由于疫苗通常会引起发烧反应,因此建议对扑热息痛在疫苗上进行给药。bexsero具有四个抗原构成;三种重组蛋白和外膜外囊泡(OMV)。OMV包含几种含有外膜蛋白(OMP)和脂多糖(LPS)的反应生成成分。bexsero已知含有LP,这是一种有效的发烧引起剂(Pyrogen)。此外,OMV中存在其他非耐毒素毒素的pyro-促成整体发烧反应的影响。这已经在单细胞激活测试(MAT)中进行了说明,用于监测疫苗批处理的总热原含量。非遗传毒素热原会影响疫苗测试时观察到的总体热原反应,从而在非平行剂量反应曲线中产生(图1)。虽然认为非耐毒素中的热蛋白在对Bexsero的发烧反应中发挥了作用,但尚不清楚哪些成分是负责的,或者它们如何调节热源反应。在这项调查中,我们旨在确定与Bexsero的先天免疫反应相关的途径,从而提供了几种热元如何对整体发烧反应做出贡献的情况。
关键词 飞机客舱,热舒适度,数值模拟,PMV(预测平均投票),PPD(预测不满意百分比) 1 引言 客机客舱是一个狭窄封闭的空间,通常乘客密度较高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了巨大努力(Pang et al. 2014)。有几种方法可以研究这些区域的热舒适度。在一些研究中,使用了著名的预测平均投票(PMV)模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学(CFD)来预测局部皮肤温度并计算热舒适度。Cui et al. (2014) 在飞机客舱内进行了现场测量,绘制了空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热度并不满意,因为他们感到很热。热舒适度图表现出不均匀性;中舱温度总是较高。然而,据报道,垂直温度梯度和空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。结论是,模拟飞机客舱的整体热感觉相对较好,但据报道,局部热不适感较高。Haghighat 等人(1999 年)在 43 次商业航班中进行了测量,持续时间超过一小时,期间持续监测温度、相对湿度和二氧化碳浓度。结果表明,平均气温为
背景。形成大质量恒星会发射磁源流出物,这实际上是寻找大质量恒星形成地点的标志。然而,直到最近几年,才有可能对这种磁驱动流出物的形成和传播进行理论和观察研究。目的。通过这项工作,我们旨在详细研究从大质量恒星形成早期阶段驱动高度准直流出的机制,以及这些过程如何受到形成大质量恒星的原生环境特性的影响。方法。我们进行了一系列 31 次模拟,旨在建立这些机制的统一理论图景,并确定不同环境的影响如何改变它们的形态和动量输出。磁流体动力学模拟还考虑了欧姆耗散作为非理想效应、自重力和尘埃和气体热吸收和发射的扩散辐射传输。我们从一个坍缩的云核开始,它被最初均匀的磁场穿过,并且正在缓慢旋转。我们在球坐标系中使用了二维轴对称网格。结果。在模拟中,我们可以清楚地区分快速的磁离心发射和准直喷流(速度 ≳ 100 km s − 1 )和由磁压驱动的更宽的磁塔流,后者会随时间而变宽。我们详细分析了流动的加速度,以及它在几百个天文单位的距离处被磁力重新准直。我们量化了磁制动对外流的影响,这会缩小系统后期演化的外流腔。我们发现,尽管自重力和介质热力学不可扩展,但我们的结果会随着云核的质量而变化,原则上可以用于这种质量的一系列值。我们观察到,对于大质量原恒星的诞生环境的各种假设,都存在相同的喷流驱动机制,但随着时间的推移,它们的形态和机械反馈会发生变化,从而达到更大的尺度。
物联网 (IoT) 是一种使日常物品 (即事物) 能够连接到互联网并交换数据的范例 [1] [2] [3]。物联网设备(如智能手机和可穿戴设备)通常具有增强的功能,包括传感、联网和处理。使用服务范例抽象这些物联网设备的功能可以为交换大量新颖的物联网服务(又名众包物联网服务)提供机会 [4] [5]。例如,物联网设备可以提供 WiFi 热点或无线能源服务来为其他物联网设备充电 [6] [7]。这些众包物联网服务为资源受限的设备提供了一种便捷、经济高效的解决方案,有时甚至是唯一可能的解决方案。我们的重点是物联网设备之间的无线能源共享。能源即服务 (EaaS) 是附近物联网设备之间无线传输能源的抽象 [8]。 EaaS 是一种物联网服务,通过无线方式将能源从能源供应商(例如智能鞋)输送到能源消费者(例如智能手机)。智能纺织品或智能鞋是可以从自然资源(例如体热或身体活动)中收集能源的能源供应商的例子 [9]。例如,佩戴 PowerWalk 收集器可以在以舒适的速度步行一小时后产生能量,为四部智能手机充电 1 。收集到的能量可以作为服务提供给附近的物联网设备。可以通过新开发的“无线”无线充电技术部署能源服务 [10]。目前,包括小米、Energous 和 Cota 在内的多家公司正在开发远距离物联网设备的无线充电技术。例如,Energous 开发了一种可以在 5 米距离内充电高达 3 瓦的设备。众包 EaaS 生态系统是一个动态环境,由聚集在微蜂窝中的供应商和消费者组成。微蜂窝是任何密闭区域,人们
