摘要:像人类一样行动的移动机器人应该拥有多功能灵活的传感系统,包括视觉、听觉、触觉、嗅觉和味觉。气体传感器阵列(GSA),也称为电子鼻,是机器人嗅觉系统的一种可能解决方案,可以检测和区分各种气体分子。应用于电子鼻的人工智能(AI)涉及一组不同的机器学习算法,这些算法可以通过分析来自 GSA 的信号模式来生成气味印记。GSA 和 AI 算法的结合可以使智能机器人在许多领域发挥强大的功能,例如环境监测、气体泄漏检测、食品和饮料生产和储存,尤其是通过检测不同类型和浓度的目标气体进行疾病诊断,具有便携性、低功耗和易于操作的优势。令人兴奋的是,配备“鼻子”的机器人将充当家庭医生,守护每个家庭成员的健康,保证家庭安全。在本综述中,我们总结了 GSA 制造技术和人工嗅觉系统中采用的典型算法的最新研究进展,探索了它们在疾病诊断、环境监测和爆炸物检测中的潜在应用。我们还讨论了气体传感器单元的主要局限性及其可能的解决方案。最后,我们展示了 GSA 在智能家居和城市领域的前景。
为了满足对安全物联网网络的关键需求,本研究提出了一个可扩展且轻巧的课程学习框架,并使用可解释的AI(XAI)技术(包括石灰)来增强,以确保透明度和适应性。所提出的模型采用了在课程学习的每个阶段使用的新型神经网络体系结构,以有效地捕获和专注于短期和长期的时间依赖性,提高学习稳定性并提高准确性,同时保持轻量级和强大的对依次IOT数据中的噪声。通过分阶段学习实现了鲁棒性,在该学习中,模型通过删除低相关功能和优化性能来迭代地完善自己。工作流程包括边缘优化的量化和修剪,以确保可以轻松地部署在边缘iot设备中的便携性。合并随机森林,XGBoost和分阶段学习基础的合奏模型进一步增强了概括。实验结果表明,CIC-IOV-2024和CIC-APT-IOIT-2024数据集的精度为98%,边缘IOIT的数据集和97%的数据集,将此框架确定为具有稳健,透明和高性能解决方案,以实现IoT网络安全性。
根据国际能源署的数据,每个人每年消耗的能源超过 80 GJ;这相当于地球上每个人让洗衣机连续运转一年。到 2040 年,这一消耗量预计将增长 28%(与 2015 年的水平相比)1。其中大部分(86%)能源来自化石燃料。对化石燃料的依赖带来了巨大的环境成本,气候变化可以说是我们这个时代面临的最大挑战。可再生能源提供了一种可能的解决方案。然而,太阳能和风能等可再生能源并不是持续的能源,因此,储能技术或电池仍然是全球进一步采用可再生能源的迫切挑战。除了需要高效的电池来储存可再生能源外,电池的便携性使其成为移动技术(包括电动汽车)的重要组成部分。目前的电池是基于两个世纪前开发出来的众所周知的电化学原理运行的。虽然人们正在通过优化材料和设备架构来提高电池的性能,但值得探索全新的、颠覆性的储能方法。量子电池是一种利用量子力学来提高性能或功能的储能设备。尽管量子电池尚处于起步阶段,仅进行了原理验证演示,但其创新的设计原理为未来的能源挑战提供了潜在的解决方案。
摘要——由于每秒数千帧的超快超声成像的出现,超声对慢血流运动的灵敏度在过去十年中提高了两个数量级。在神经科学中,这种对小脑血管流的接触导致超声作为一种新的、成熟的神经成像方式被引入。与功能性 MRI 或功能性光学成像一样,功能性超声 (fUS) 受益于神经血管耦合。它的易用性、便携性、空间和时间分辨率使其成为临床前成像中脑活动功能成像的有吸引力的工具。大量且快速增长的研究在各种小型到大型动物模型中证明了其在神经科学研究中的潜力。除了临床前成像之外,在人类身上的首次概念验证应用前景光明,并证明了明显的临床兴趣,特别是在人类新生儿、术中手术,甚至非侵入性脑机接口的开发中。这篇文章是题为“脑成像”的特刊的一部分。2021 作者。由 Elsevier Ltd 代表 IBRO 发布。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
复合材料航空航天结构在役检查指南 Jaap H. HEIDA、Derk J. PLATENKAMP 航空航天飞行器、国家航空航天实验室 NLR、荷兰马克内瑟,电话:+31 88 5114283,传真:+31 88 5114210;电子邮件:jaap.heida@nlr.nl 摘要 通过对有前景的移动无损检测 (NDI) 方法的评估结果,对复合材料航空航天结构的在役检查进行了综述。评估使用了代表主要复合材料航空航天结构的碳纤维增强样品,包括相关损伤类型,如冲击损伤、分层和脱粘。对一系列 NDI 方法进行了评估,例如目视检查、振动分析、相控阵超声波检查、剪切扫描和热成像检查。评估的重要方面包括缺陷检测和表征能力、设备的便携性、视野、耦合剂要求、检查速度、所需培训水平和设备成本。本文回顾了复合材料的损伤容限设计方法,并总结了复合材料航空航天结构的在役检查指南。关键词:航空航天、复合材料、无损、损伤容限、目视检查、振动分析、超声波、相控阵、剪切成像、热成像 1. 简介 由于复合材料部件在军用主飞机和直升机结构中的使用逐渐增加,因此
散射(基于SER)的传感器在敏感性,效率和便携性方面提供了许多传统传感器的优势。等离子底物以高度开发的纳米结构金属的形式形式显示,已显示出对拉曼散射信号的显着增强(最多10 7次)的显着性增强(有机/生物/生物有机分子,底层质量,且无机的晶体 - 晶体质体nano-scressor nanano-nanano-nanano-nanano-nanano-nanano crenivers nanano corneminity the semogange cants cants s lms。 (LSPR)。13 - 15使用纳米光刻的金属纳米簇阵列组成的等离子底物的制造允许研究谐振效应,以增强对位于不同大小的金属纳米粉丝的分析物的增强。15用于等离子材料,金和银主要使用。第一个是一种惰性材料,在正常条件下不进行化学反应,但可以提供足够的等离激元增强。第二个,尽管是反应性的,但具有介电功能的高度假想部分,因此具有强大的等离子增强功能。两种材料都广泛用于可见光谱范围内的SER和TERS实验。石墨烯用于创建此类传感器,原因有几个。首先,由于石墨烯是导体,因此可以激发自己的等离子体,从而激发
I.简介 失明是世界上最常见的残疾之一。在过去的几十年里,因自然原因或事故而失明的人数有所增加。部分失明的人视力模糊,只能看到阴影,夜视能力差或视野狭窄。另一方面,完全失明的人没有视力。根据世界卫生组织的数据,全世界约有 22 亿视障人士或盲人 [1]。盲人传统上使用白手杖帮助他们在周围环境中导航,尽管这种方法无法提供远处移动障碍物的信息。此外,白手杖无法识别膝盖以上较高的障碍物。另一种帮助盲人的方法是使用经过训练的导盲犬。另一方面,经过训练的狗价格昂贵且难以获得。最近的研究 [2]-[9] 提出了几种可穿戴或手持电子旅行辅助设备 (ETA)。这些小工具中的大多数都包括各种传感器,可以绘制环境地图并通过耳机提供语音或声音警报。这些设备的可靠性受实时听觉信号质量的影响。许多当代 ETA 缺乏实时阅读辅助,用户界面差、成本高、便携性有限且没有免提访问。因此,这些小工具并不受盲人的欢迎,它们需要在设计、性能和可靠性方面进行改进,以便在室内和室外环境中使用。
散射(基于SER)的传感器在敏感性,效率和便携性方面提供了许多传统传感器的优势。等离子底物以高度开发的纳米结构金属的形式形式显示,已显示出对拉曼散射信号的显着增强(最多10 7次)的显着性增强(有机/生物/生物有机分子,底层质量,且无机的晶体 - 晶体质体nano-scressor nanano-nanano-nanano-nanano-nanano-nanano crenivers nanano corneminity the semogange cants cants s lms。 (LSPR)。13 - 15使用纳米光刻的金属纳米簇阵列组成的等离子底物的制造允许研究谐振效应,以增强对位于不同大小的金属纳米粉丝的分析物的增强。15用于等离子材料,金和银主要使用。第一个是一种惰性材料,在正常条件下不进行化学反应,但可以提供足够的等离激元增强。第二个,尽管是反应性的,但具有介电功能的高度假想部分,因此具有强大的等离子增强功能。两种材料都广泛用于可见光谱范围内的SER和TERS实验。石墨烯用于创建此类传感器,原因有几个。首先,由于石墨烯是导体,因此可以激发自己的等离子体,从而激发
脑电图 (EEG) 可以记录与运动相关的大脑区域的功能连接,并预测中风后运动恢复的可能性 ( Hoshino et al., 2020 )。PMA 位于皮质运动区前部,中央前回前方。其主要生理功能是运动的准备和计划,这是一个至关重要的运动控制组成部分 ( Park et al., 2011; Wang et al., 2016 )。在 ME 期间,MA 接收来自 PMA 的信号,随后向身体肌肉发送命令来执行动作,从而控制身体运动 ( Fleischmann et al., 2014 )。此外,通过 EEG 测量的运动皮质连接,特别是同侧运动区和同侧运动前区 (PMA) 连接,与运动障碍和中风后治疗的改善密切相关;因此,它可能是皮质功能和可塑性的有用生物标志物 ( Wu et al., 2015 )。与功能性磁共振成像(fMRI)或脑磁图(MEG)相比,电流源估计的可靠性和空间分辨率有限;但脑电图具有低成本和便携性的优势(Xiaogang et al.,2021)。它可用于脑卒中患者的床边评估,其毫秒级的时间分辨率有利于探索神经活动的动态变化(Warbrick,2022)。
1.引言 有翅膀的鸟类和昆虫天生就具有良好的飞行性能[1-4] 。飞行器类型有固定翼、旋翼和扑翼。与固定翼和旋翼机飞行相比,仿生扑翼飞机具有独特的优势,如能原地或狭小场地停留、操纵性优异、悬停飞行性能好、飞行成本低等。飞机兼具升力、悬停、推动功能,扑翼系统[5] 。小型扑翼机器人因便携性、操作性、灵活性、隐蔽性好、制造成本低等特点,在军事和民用领域有着广泛的应用前景[6-7] 。正是由于其在各个领域具有很大的适用性,许多国家都将其视为重点研究对象[8] 。由加州理工学院和AeroVironment公司联合研制的Microbat是最早的电动微型扑翼飞机[9] 。第四架原型机的巡航时间为 22 分 45 秒。Microbat 的翼展只有 23 厘米,重量只有 14 克,扑翼频率约为 20Hz,可以携带一个微型相机。Mentor 由多伦多大学和斯坦福研究中心 (SRI) 合作生产,最大翼展为 15 厘米,重量为 50 克。它有四个机翼。机翼由电致伸缩聚合物人工肌肉 (EPAM) [9] 提供动力。德国公司 Festo 开发了仿生飞狐 [10] ,总质量为 580 克