目的:设计基于ISATIN的化合物,在计算机研究中进行,并确定具有生物活性的伊萨蛋白衍生物。方法:使用ChemDraw设计了14种基于伊萨蛋白的化合物(a至n)。此外,将设计化合物的硅酸研究(分子对接,药物可能性,胃肠道吸收,log P和毒性)与环丙沙星进行了比较。基于计算机研究的结果,选择了三种化合物(G,H和L)进行合成,并通过光谱分析阐明G,H和L的化学结构。评估了G,H和L的抗菌活性和DNA陀螺酶抑制活性,并与环丙沙星的抗菌活性和比较。结果:化合物G,H和L的对接得分(-5.90,-5.72和-5.98 kcal/mol)相对较大,比环丙沙星(-5.41 kcal/mol)的对接得分相对好。在计算机研究中,数据还揭示了G,H,L和环丙沙星的非热毒性性质,药物型特性和良好的胃肠道吸收。The in vitro antimicrobial activity (p < 0.05) and DNA gyrase inhibitory activity of G (102.33 %, p < 0.05), H (104.43 %, p < 0.05), and L (106.77 %, p < 0.05) were better than those of ciprofloxacin (100.0 %, p < 0.05).结论:化合物G,H和L是有希望的DNA陀螺酶抑制剂。应进一步探索这些化合物,以确定它们的广谱抗菌效力,安全性和功效。关键字:伊萨蛋白,分子对接,合成,抗菌活性,DNA旋转酶抑制剂
*通讯作者,电子邮件:cyprian.mieszczynski@ncbj.gov.pl摘要摘要McChasy Code的主要目标是,通过模拟在Cryselline结构和crysefters cryselline cropters cryselline cropters和collesters的过程中,在通道(RBS/c)中记录了Rutherford反向散射光谱实验实验,该光谱实验是在频道/c/c中复制了。该代码的2.0版本提供了模拟大型频道的可能性(Ca.10 8原子)基于晶体学数据或分子动态(MD)计算而创建的任意结构。在这项工作中,我们介绍了代码的当前状态以及最近对镍(Ni)单晶形成的扩展结构缺陷(边缘位错和位错环)的研究结果。描述了两种建模扩展缺陷的方法:一种使用McChasy Code(PEIERLS-NABARRO方法)开发的,另一种是通过MD(LAMMPS代码)对Ni结构进行修改和热化获得的另一种。由局部弹丸 - 通量密度分布在缺陷周围进行了定性和定量研究。1。在过去的几十年中,许多组对不同材料的辐射缺陷进行了广泛的研究。许多作者[1-4]将卢瑟福的反向散射光谱(RBS/C)技术用作分析离子植入单晶的结构特性的标准方法[1-4]。不幸的是,缺乏适当的RBS/C光谱分析和过度简化方法的工具,通常会引起误导性结果。因此,开发一个适当的工具,可以分别针对在研究晶体中形成的各种缺陷进行详细的定量分析。McChasy V.1.0是在八十年代末在国家核研究中心开发的[5,6]。该代码的第一个版本的主要原理是通过模拟He-ions在内部旅行
摘要:大脑 - 计算机接口(BCI)可以通过注册和处理脑电图(EEG)信号来提取有关受试者意图的信息,以生成对物理系统的操作。稳态视觉诱发的电位(SSVEP)是当受试者凝视着视觉刺激时产生的。通过光谱分析并测量其谐波含量的信噪比(SNR),可以识别观察到的刺激。刺激颜色很重要,一些作者提出了红色,因为它具有吸引注意力的能力,而另一些作者则拒绝了它,因为它可能会诱发癫痫发作。绿色也已提出,据称白色可能会产生最好的信号。关于频率,尽管尚未彻底研究高频,但声称中间频率产生了最佳的SNR,并且由于该频带的自发性脑活动较低,因此可能是有利的。在这里,我们以三个频率显示白色,红色和绿色刺激:5(低),12(中)和30(高)Hz至42个受试者,并进行比较以找到可以产生最佳SNR的。我们的目标是知道对白色的响应是否像红色一样强,并且对高频的响应是否与较低频率触发的响应一样强。注意力。方差分析(ANOVA)显示了具有中间频率的最佳SNR,其次是低,最终是高频率的。白色在12 Hz时给出了红色的SNR,绿色为5 Hz,在30 Hz时没有差异。这些结果表明中间频率是可取的,并且可以避免使用红色。相关性分析还显示了注意力低频与SNR之间的相关性,因此表明对于低频,更多的注意力能力会带来更好的结果。
背景:Deguelin(DGL)是一种天然类黄酮,据报道在乳腺癌(BC)中表现出抗肿瘤作用。PEG-PCL(聚乙烯甘氨酸聚二苯乙酮),作为聚合物胶束具有生物降解性和生物相容性。这项研究的目的是研究纳米关节递送系统,PEG-PCL是否可以改善DGL抑制BC细胞增殖的生物利用度。方法:PEG-PCL聚合物首先是通过开环聚合物制备的,DGL和PACLITAXEL(PTX)负载的PEG- PCL纳米微粒是通过膜分散法制定的。通过核磁共振和傅立叶变换红外光谱(FTIR)光谱分析了PEG-PCL的组成和分子量。分别通过动态光散射,透射电子显微镜和溶血测定法评估了胶束的粒径,表面电位和溶血活性。然后用EDU染色,CCK-8,TUNEL染色和流式细胞仪测试了MDA-MB-231和MDA-MB-468细胞的增殖和凋亡。caspase 3表达也通过蛋白质印迹评估。结果:我们的结果首先表明PEG 2000 -PCL 2000已成功合成。DGL和PTX负载的PEG-PCL纳米微粒的形状为圆形,粒径为35.78±0.35 nm,表面电势为2.84±0.27 mV。胶束具有最小的溶血活性。此外,我们证明了DGL和PTX荷载PEG-PCL纳米细胞可以抑制BC细胞中的增殖并诱导凋亡。这为开发新的治疗策略提供了潜力。这项研究中构建的DGL和PTX负载的PEG-PCL纳米微粒具有显着的抑制作用,对BC细胞中的凋亡作用显着,并且在凋亡中具有显着的促销作用。结论:这项研究提出,PEG-PCL形成的纳米丝可以增强紫杉醇针对乳腺癌细胞的细胞毒性,同时,Deguelin的负载可能会进一步抑制细胞增殖。
抽象简介:中风是全球发病率和死亡率的主要原因。虽然脑电图(EEG)提供了有关中风后大脑活动的有价值的数据,但可能会误解定性的EEG评估。因此,我们检查了定量脑电图(QEEG)的潜力,以确定可以用作中风患者潜在电生理生物标志物的关键带频率。材料和方法:进行了一项单中心病例对照研究,在同意下招募了患有中风和健康对照的患者。EEG在中风患者入院后的48小时内以及对照组的门诊评估期间进行。预处理EEG信号,使用MATLAB分析光谱功率,并绘制为topoplots。结果:总共包括194名参与者,并将同样分为缺血性中风和对照的患者。我们研究队列的平均年龄为55.11岁(SD±13.12),中位国家卫生中风量表(NIHSS)得分中位数为6(IQR 4-6),而Lacunar Stroke是最常见的亚型(49.5%)。光谱分析,随后进行了地形脑映射,突出了Beta,Alpha和Gamma频段内重要通道的聚类。结论:QEEG分析确定了卒中后患者感兴趣的重要带频率,这表明是诊断和预后工具的作用。地形大脑映射提供了可以指导干预和康复策略的精确表示。未来的研究应探讨机器学习用于中风检测并提供个性化治疗方法。关键词:定量脑电图,QEEG,中风,光谱脑电图,地形简介中风是一种异质疾病,其特征是各种血管,血液动力学和全身异常。根据2017年全球疾病,伤害和危险因素研究
使用机器学习(ML)算法在制造过程中嵌入的传感器内部嵌入的信息的进步和识别,以更好地决策成为构建数据驱动的监视系统的关键推动因素。在激光粉床融合(LPBF)过程中,基于数据驱动的过程监视正在广受欢迎,因为它允许实时组件质量验证。加上制造零件的实时资格具有重要的优势,因为可以降低传统的生产后检查方法的成本。此外,可以采取纠正措施或构建终止以节省机器时间和资源。然而,尽管在满足LPBF流程中的监视需求方面取得了成功的发展,但由于不同的过程空间,在处理来自激光材料互动的数据分布的变化时,对ML模型在决策方面的鲁棒性进行了更少的研究。受到ML中域适应性的想法的启发,在这项工作中,我们提出了一种基于深度学习的无监督域适应技术,以解决由于不同的过程参数空间的数据分布的转移。在两个不同的316 L不锈钢粉末分布(> 45 µm和<45 µm)上获得了从LPBF过程区域到三个机制到三个方案的声学发射区到三个方案的声波形式。对应于用不同激光参数处理的粉末分布的声波形的时间和光谱分析显示,数据分布中存在偏移,随后用建议的无监督域适应技术对其进行处理,以具有可以普遍化的ML模型。进一步,两个分布之间提议的方法的预测准确性表明,不受欢迎地适应新环境的可行性并改善了ML模型的推广性。
X射线衍射(XRD)是一种直接且强大的表征技术,可提供有关晶格结构和晶体材料中远程顺序的详细信息。近几十年来,由于在线晶体结构数据库的出现,可用的晶体结构数据库的出现,现场和操作方法的使用增加以及可访问用户可访问的光束线。新的数据还催生了越来越多的机器学习(ML)来构建已建立分析的高通量替代物,或从大型数据集中提取模式。然而,XRD光谱已通过Rietveld的细化已解决了多年,而大多数ML技术只是物理 - 非替代的复杂统计评估方法。数据分析与潜在物理学之间的差异可能导致结论不正确和/或限制ML技术的广泛采用。在这篇综述中,我们通过针对新的数据科学家和对与ML引导的光谱分析有关的问题感兴趣的新数据科学家和实验者设计的简介弥合了ML和XRD光谱之间的差距。我们介绍了如何使用监督的ML方法来预测纯样本和混合样本中的可能对称性和相位,包括与实验伪像和模型解释有关的挑战。我们还回顾了无监督方法在提取隐藏在高维数据中的模式中的最新用途,例如在原位和微观研究中。我们提倡对ML方法进行更大的审查,文献中的介绍方式以及如何负责任地进行数据驱动的研究。最后,我们讨论了问题制定,数据可传输性和报告与最新案例研究的重要性,并在整个过程中提供了各种资源,以加快XRD或ML新读者的学习曲线。
1。对重金属(CR(VI)和CD(II))基于农业废物的吸附剂的合成,表征和吸附行为的全面综述,J。DispersionScience和Technology,45(2),45(2),171-202,2023,171-202,2023,Ritu Gupta,Rittu Kumar Gupta,sudhir Kumar Gupta&Chhagan&Chhagan&Chhagan lal lal lal fincter(2)。2。化学修饰的菠萝蜜叶是一种低成本的农业废物吸附剂,用于从合成废水中去除Pb(II)J。危险材料前进,10,100292,2023,Ritu Gupta,Sudhir Kumar Gupta,Chhagan Lal Gehlot和Indra Bahadur(影响因素:4.8)。3。对1.75 meV n 5+离子的光谱分析辐照聚苯乙烯膜,并寻求富勒烯和其他产品的反应机理,J。辐射物理和化学,214,111300,2023,Shiv Govind Prasad&Chhagan Lal(影响因子:2.9)。4。Modification of Optical Bandgap and Formation of Carbonaceous Clusters Due to 1.75 MeV N 5+ Ion Irradiation in PET Polymers and Search for Chemical Reaction Mechanisms, J. Bio-interface Research in Applied Chemistry,13(1),1-17,2023, Shiv Govind Prasad, Chhagan Lal, Kriti Ranjan Sahu, Udayan De (Impact factor: 1.949).5。一种从煤灰废物中合成低成本沸石的贵族和经济的方法,J。材料和加工技术的进步,8,301-319,2022,Virendra Kumar Yadav,R。Suriyaprabha,Gajendra Kumar Inwati,Nitin Gupta,Bijendra Gupta,Bijendra Singh,Chhagan Lal,Chhagan Lal,Pankaj Kumar Lal,Pankaj Kumar,Meena Godha godha&Haresh kaleshasariyya(影响factial faction faction faction faction faction faction faction faction faction faction faction faction faction faction faction factic:2.37)。6。对农业废物的处理方法的综述,来自废水,分离科学和技术的PB(II)离子隔离的广告,57(17),2735-2762,2022,Ritu Gupta,Ritu Gupta,Chhagan Lal Gehlot,Sunil Kumar Yadav(Sunil Kumar Yadav(影响因素:2.7999)。
这项研究着重于使用伊普莫西亚laxiϔlora的叶提取物的银纳米颗粒生产,并评估其抗氧化剂和溶血效应。据我们所知,这是使用该物种合成银纳米颗粒的第一个报告。绿色的合成在医疗和环境中都具有巨大潜力,旨在利用较小的危险化学物质。基于植物的合成被认为是安全和有效的,这是由于植物提取物中的还原和封盖剂。ipomoea laxiϔlora H.J.Chowdhery&债务属于Heardolvulaceae家族,是热带非洲和印度的年度登山者。它传统上被用来治疗发烧,头痛和胃痛。植物化学筛选显示了生物碱,saponins,苯酚,单宁,萜类化合物,类固醇,糖苷和心脏糖苷的存在。定量的植物化学含量,包括总酚类,lavonoid和proanthocyanin含量。ft-ir光谱分析表明主要官能团的特征峰值,例如烷烃,烷烃和羰基。通过将10 ml的甲醇叶提取物加入90 mL 1 mM 1 mM硝酸银水溶液,然后在80摄氏度加热三个小时后,连续搅拌将银纳米颗粒合成,然后在80摄氏度加热三个小时。从黄色到深棕色的颜色变化确认了银纳米颗粒的形成。较高的浓度表现出增加的清除活性。由DPPH自由基清除测定法确定的抗氧化活性显示甲醇提取物的清除活性为94%,而抗坏血酸为98%。总抗氧化活性在己烷和甲醇提取物中为60%至89%,甲醇显示出最高的浓度。溶血活性,在100 µg/ml的浓度下,溶血率为2.751%。使用诸如ipomoea laxiϔlora之类的天然来源开发绿色纳米颗粒,对环境可持续性,健康益处,多样化的生物医学应用,资源效率和成本率有很大的重要性。接受这种绿色方法不仅可以推进纳米技术,而且还与促进可持续发展的更广泛的目标保持一致。
所有物质的结构和性质都由基本相互作用和对称性决定。对于可见物质的小组成部分——原子来说尤其如此。因此,原子光谱的研究是提高我们对自然理解的重要工具。高电荷离子构成了所有原子系统的大多数,因为每个单独的元素都具有与电子一样多的电荷状态,并且它们在宇宙中无处不在。因此,它们的系统研究不仅是原子物理学的一个组成部分,而且对天体物理学、核物理学和聚变研究等许多其他领域也具有重要意义。最近,高带电离子中的光学跃迁已被提出用于粒子物理标准模型之外的未知物理的敏感测试和新型光学原子钟。然而,由于实验方法不充分,相对光谱精度仅略优于 10 −6,迄今为止阻碍了此类项目的实施。在这项工作中,我们首次展示了高电荷离子的相干激光光谱。与以前使用的光谱方法相比,精度可以提高约 8 个数量级。以高电荷40 Ar 13 +离子中的光学2 P 1 / 2 – 2 P 3 / 2精细结构跃迁为例进行了研究。将该物种的单个离子从热等离子体中分离出来,并将其与激光冷却的单电荷 9 Be + 离子一起作为双离子晶体存储在低温保罗阱的谐波势中。然后,这个耦合的量子力学系统被冷却到运动基态——这是高电荷离子所达到的最冷状态。利用量子逻辑,可以制备40 Ar 13 +离子的电子态,经过光谱分析后,转移到9 Be +逻辑离子并进行检测。此外,还测量了激发态的寿命和 g 因子——后者具有前所未有的精度,这使得解决狭义相对论、电子相互作用和量子电动力学的效应成为可能,并澄清了不同理论预测之间的差异。所展示的概念普遍适用于高电荷离子。因此,这项工作开辟了高带电离子用于各种基础物理测试的潜力,用于探索未知物理(例如第五种力、基本常数的变化和暗物质)以及用于未来的光学原子钟。