在本文中,我们讨论了使用指标来应对机载棱镜实验 (APEX) 高光谱开放科学数据集 (OSD) 的维数缺点,并使用可能性 c 均值 (PCM) 算法提高分类精度。这用于制定光谱和空间指标,以较低的维度描述数据集中的信息。这种降低的维度用于分类,试图提高确定特定类别的准确性。光谱指标是根据目标的光谱特征编制的,空间指标是使用定义邻域上的纹理分析来定义的。为了评估光谱和空间指标在提取特定类别信息中的适用性,考虑了 20 个不同空间分布的类别的分类。数据集的分类分两个阶段进行;光谱和光谱与空间指数的组合分别作为 PCM 分类器的输入。除了降低熵之外,在考虑光谱空间指数方法的同时,实现了 80.50% 的整体分类准确率,而仅光谱指数为 65%,最佳确定的主成分为 59.50%。
摘要对液体与二维(2D)材料之间相互作用的全面了解对于从液体细胞显微镜到Hydredrovoltaics的操作,转移和组装的2D材料的操纵,转移和组装至关重要。本综述通过调查悬浮2D材料的固有润湿性以及底物支持的2D材料的明显润湿性来讨论这种相互作用,最近通过水接触角(WCA)实验揭示了这两种材料。我们讨论可能影响明显WCA的重要因素,包括薄膜弹性,表面污染以及底物下方的微观结构和电子状态。我们还讨论了一些微观级别的见解,这些见解最近通过光谱特征和表面能量测量提供了最近提供的。通过讨论表征2D材料与液滴之间相互作用的最新实验进步,该评论旨在激发未来的理论进步,能够揭开在2D材料系统中观察到的复杂且偶尔矛盾的润湿行为。
量子纠缠态的控制和操纵对于量子技术的发展至关重要。一种有前途的途径是通过它们的光学偶极-偶极相互作用耦合固态量子发射器。纠缠本身就具有挑战性,因为它需要发射器之间的纳米距离和近乎简并的电子跃迁。在这里,我们实施高光谱成像来识别耦合的二苯并蒽分子对,并通过使用斯塔克效应调整分子光学共振来找到最大纠缠的超辐射和亚辐射电子态的独特光谱特征。我们展示了使用振幅和相位定制的激光场对长寿命亚辐射离域态进行远场选择性激发。耦合分子的光学纳米显微镜揭示了由其激发路径中的量子干扰引起的空间特征,并揭示了每个发射器的位置。受控电子态叠加将有助于破译由相干耦合控制的更复杂的物理或生物机制并开发量子信息方案。
在本研究中,我们基于从狨猴大脑中收集的局部场电位数据,提出了一种与帕金森病 (PD) 相关大脑区域的新型生物物理计算模型。帕金森病是一种神经退行性疾病,与黑质致密部多巴胺能神经元的死亡有关,而这会影响大脑基底神经节-丘脑-皮质 (BG-TC) 神经回路的正常动态。尽管该疾病有多种潜在机制,但仍然缺乏对这些机制和分子发病机制的完整描述,而且仍然无治愈方法。为了填补这一空白,人们提出了类似于动物模型中发现的神经生物学方面的计算模型。在我们的模型中,我们执行了一种数据驱动的方法,其中使用差分进化优化一组生物约束参数。进化模型成功地模拟了健康和帕金森狨猴脑数据的单神经元平均放电率和局部场电位的光谱特征。就我们而言,这是
在当前的麻醉学实践中,麻醉师推断出无意识状态,而无需直接监测大脑。药物和患者特异性的脑电图(EEG)特定的麻醉引起的潜意识的特征已被鉴定。我们将机器学习方法应用于构建分类模型,以在麻醉引起的无意识期间对无意识状态的实时跟踪。我们使用交叉验证选择和训练最佳性能模型,使用33,159 2S段的脑电图数据记录在7位健康志愿者中,他们收到了丙泊酚越来越多的兴奋剂,同时响应刺激,以直接评估无意识。在相同条件下收集的3个剩下的志愿者(中位志愿者AUCS 0.99-0.99)对13,929 2s EEG段进行测试时,的交叉验证模型表现出色。 模型在对27名手术患者的队列进行测试时显示出强烈的概括,这些手术患者在不同的情况下仅接受单独的临床数据集中收集的丙泊酚,并使用不同的硬件(中位患者AUC 0.95-0.98),并在病例中采取了模型预测,并采取了模型预测。 对17例接受七氟醚(单独或除丙泊酚之外)的患者的表现也很强(AUC中位数为0.88-0.92)。 这些结果表明,即使对具有类似神经机械的不同麻醉剂进行测试,EEG光谱特征也可以预测不同意性。的交叉验证模型表现出色。模型在对27名手术患者的队列进行测试时显示出强烈的概括,这些手术患者在不同的情况下仅接受单独的临床数据集中收集的丙泊酚,并使用不同的硬件(中位患者AUC 0.95-0.98),并在病例中采取了模型预测,并采取了模型预测。对17例接受七氟醚(单独或除丙泊酚之外)的患者的表现也很强(AUC中位数为0.88-0.92)。这些结果表明,即使对具有类似神经机械的不同麻醉剂进行测试,EEG光谱特征也可以预测不同意性。有了高性能的无意识预测,我们可以准确地监测麻醉状态,并且该方法可用于设计输液泵,以对患者的神经活动有明显的反应。
摘要:光合生物将离散的集光复合物组织成大规模网络,以促进高效的光收集和利用。受大自然的启发,本文使用合成的 DNA 模板引导染料聚集体与菁染料 K21 形成离散的分支光子复合物和二维 (2D) 激子网络。DNA 模板的范围从四臂 DNA 瓦片(每臂约 10 纳米)到具有不同几何形状和不同尺寸的二维线框 DNA 折纸纳米结构,最大可达 100 × 100 nm 2 。这些 DNA 模板染料聚集体表现出强耦合的光谱特征和离域激子特性,从而实现高效的光子收集和能量传输。与在单个 DNA 瓦片上模板化的离散分支光子系统相比,互连的激子网络的能量传输效率提高了约 2 倍。这种自下而上的组装策略为创建具有复杂几何形状和工程能量路径的二维激子系统铺平了道路。
氧空位在塑造金属氧化物的特性中起着至关重要的作用,例如催化,铁电性,磁性和超导性。尽管X射线光电子光谱(XPS)是一种健壮的工具,但准确的氧气空位定量仍然是一个挑战。XPS分析中的一个常见错误是将O 1 S光谱中的531 - 532 eV特征与氧空位相关联。这是不正确的,因为空的氧气位点不会发出光电子,因此不会产生直接的XPS光谱特征。为了解决这个问题,我们提出了三种通过间接特征通过XPS进行氧气空位分析的替代方法:(1)量化阳离子价状态变化,(2)通过归一化的氧气光谱强度和(3)评估FERMI能量从粘合En-Ergy中的电量移位来评估Fermi Ensightic Engy的Fermi Ensive变化。推荐的策略将促进氧气空位的精确XPS分析,从而促进未来的理解和操纵氧空位以进行先进材料开发的研究。
振动极性子是通过光腔中分子振动和光子模式的强耦合形成的。实验表明,振动强耦合可以改变分子特性,甚至会影响化学反应性。然而,分子集合中的相互作用是复杂的,并且尚未完全了解导致修饰的确切机制。我们基于双量子相干技术模拟了分子振动极化子的二维红外光谱,以进一步深入了解这些混合光 - 制成状态的复杂多体结构。双重量子相干性独特地分辨出杂交光 - 偏振子的激发,并允许人们直接探测所得状态的非谐度。通过将腔体出生的腔体 - oppenheimer hartree -fock ansatz与相应特征状态的完整量子动力学模拟结合在一起,我们超越了简化的模型系统。这使我们能够研究自动极化的影响以及电子结构对腔体相互作用在光谱特征上的响应,甚至超出了单分子情况。
摘要 - 次生的入侵神经接口需要完全可植入的无线系统,这些系统可以同时从大量通道中记录。但是,由于高吞吐量,将记录的数据从植入物转移到外部接收器是一个显着的挑战。为了应对这一挑战,本文提出了一种神经记录系统 - 片上,该系统通过使用片上的特征提取来实现高资源和无线带宽效率。能量 - 有效的10位20 ks/s前端放大并数字化局部势势内的神经信号(LFP)和动作电位(AP)频段。使用压缩的Hadamard变换(CHT)处理器将每个通道的原始数据分解为光谱特征。选择要计算的功能的选择是通过机器学习算法来量身定制的,以便在不损害分类性能的情况下将总体数据速率降低80%。此外,CHT功能提取器允许在接收器侧的波形重建进行监视或其他后处理。通过体内和离线实验验证了所提出的方法。65 nm CMO制造的原型还包括无线
我们通过时间域Terahertz(THZ)光谱法解决了将分离的水分子的实时相干旋转运动封装在富勒烯-C 60笼子中的实时旋转运动。我们采用单周期脉冲来激发水的低频旋转运动,并测量水分子电磁波随后的相干发射。在低于〜100 K的温度下,C 60晶格振动阻尼被减轻,并以明显长的旋转一致性清晰地溶解了封闭水的量子动力学,扩展到10 ps以上。观察到的旋转转变与气相中单水分子的低频旋转动力学非常吻合。然而,还观察到一些其他光谱特征,其主要贡献在〜2.26 THz处,这可能表明水旋转与C 60晶格声子之间的相互作用。我们还解决了突然冷却至4 K后水排放模式的实时变化,这意味着在10s小时内将正孔转换为偏水。观察到的隔离水分子限制在C 60中的长相干旋转动力学使该系统成为未来量子技术的有吸引力的候选者。