1. 一项描述 RSV 疫苗在健康成人中的安全性和免疫原性的研究。NCT03529773;2. 一项评估佐剂 RSV 疫苗在健康老年人中的安全性和免疫原性的研究。NCT03572062;3. Schmoele-Thoma B 等人。呼吸道合胞病毒攻击研究中的成人疫苗有效性。N Engl J Med 2022;386:2377-89。4. 18 至 ≤49 岁健康成人群体中 RSVpreF 的临床批次一致性。NCT05096208;5. RSVpreF 与 SIIV 在 ≥65 岁的成人中共同给药的安全性和免疫原性。NCT05301322; 6. 评估RSVpreF对成人的疗效、免疫原性和安全性的研究(RENOIR)。NCT05035212 CC-9
免疫检查点分子阻断剂 ( immune checkpoint blockade , ICB ) 是肿瘤免疫治疗的有效策略之一 , 其中靶向程序 性死亡受体 -1 ( programmed death receptor-1 , PD-1 ) / 程 序性死亡配体 -1 ( programmed death-ligand 1 , PD-L1 ) 的单克隆抗体主要在 TME 中发挥调节免疫细胞功能 的作用。 CD8 + T 细胞是抗肿瘤反应中极具破坏性的 免疫效应细胞群 , 其浸润到 TME 的密度是影响免疫 检查点阻断治疗结果的预测指标 [ 18 ] 。研究表明 , PD- 1/PD-L1 检查点抑制剂与化疗药物联合使用是治疗晚 期非小细胞肺癌的有效方法 , 然而其在肝癌 、 前列腺 癌等实体肿瘤中效果并不理想 [ 19 ] 。为了增强 PD-L1 抗体免疫治疗疗效 , Li 等 [ 20 ] 开发了一种偶联抗 PD- L1 单克隆抗体和负载多西紫杉醇 ( docetaxel , DTX ) 多 功能微泡系统 , 联合超声空化效应增加肿瘤细胞的凋 亡率和 G2-M 阻滞率 , 还可以通过促进 CD8 + T 和 CD4 + T 细胞的增殖 、 降低细胞因子 VEGF 和 TGF-β 的水平来增强抗肿瘤作用。为了提高 PD-L1 抗体在 肝癌中的治疗效果 , Liu 等 [ 21 ] 设计了一种携带 PD-L1 抗体和二氢卟吩 e6 ( chlorin e6 , Ce6 ) 的靶向纳米药物 递送系统 , 该类靶向纳泡可通过 PD-L1 抗体主动靶向 作用 , 促进 Ce6 在肿瘤部位的聚集与释放 , 并通过超 声介导 Ce6 声敏效应促进肿瘤细胞凋亡 、 诱导肿瘤细 胞发生免疫原性死亡 , 同时通过 PD-L1 抗体对 PD- 1/PD-L1 信号通路的阻断促进 CD8 + T 在肿瘤组织中 浸润 , 两者协同发挥抗肿瘤免疫反应。为了增强肿瘤 内部免疫细胞渗透 , Wang 等 [ 22 ] 提出一种将 PD-L1 靶 向的 IL-15 mRNA 纳米疗法和 UTMD 结合的治疗策 略 , 通过声孔效应特异性地将 IL-15mRNA 转染到肿 瘤细胞中 , 激活 IL-15 相关的免疫效应细胞 , 同时阻 断 PD-1/PD-L1 通路 、 诱导免疫原性死亡进而启动强 大的全身免疫反应。 3.3 超声联合载药微泡调节 TME 免疫抑制状态
方法:进行了一项随机、双盲、主动对照的 III 期临床试验,以比较改良的 Omicron 疫苗(Omicron 疫苗)与授权原型疫苗(CoronaVac®)作为加强剂量的效果。招募至少 6 个月前已接种 2 或 3 剂 CoronaVac(2C 或 3C 组)的 18 岁及以上健康成人,以 2:1(2C/3C+1O/1C)的比例接种 Omicron 疫苗或 CoronaVac 加强剂量。从之前的研究中收集了 26-45 岁成人接种两剂 CoronaVac(2C+0)后的备用血清。收集并分析了接种疫苗后 28 天的免疫原性和安全性数据。主要目标之一是评估 Omicron 疫苗加强剂对 Omicron BA.1 的免疫原性优势,以及 CoronaVac 加强剂对 BA.1 的免疫原性优势。另一个目标是评估 Omicron 疫苗加强剂对 BA.1 的免疫原性非劣效性,以及 CoronaVac 两剂初始剂量对祖先毒株的免疫原性非劣效性。
1 Novavax Inc.,美国马里兰州盖瑟斯堡; 2 Insights研究组织与解决方案(IROS),阿布扎比,阿拉伯联合酋长国; 3 G42 Abu Dhabi Healthcare Abu Dhabi,阿拉伯联合酋长国; 4克利夫兰诊所阿布扎比,阿拉伯联合酋长国; 5阿拉伯联合酋长国阿布扎比的Seha Sheikh Khalifa医疗城; 6阿拉伯联合酋长国阿布扎比哈利法大学医学与健康科学学院
背景。为应对最近的埃博拉疫情,过去十年来,针对扎伊尔埃博拉病毒 (EBOV) 的疫苗研发工作进展迅速。在埃博拉流行地区工作的医护人员和前线人员感染和传播病毒的风险很高。方法。本研究评估了 2 剂异源 Ad26.ZEBOV、MVA-BN-Filo 疫苗方案(间隔 56 天)在刚果民主共和国博恩德参加 2 期单中心随机疫苗试验的 699 名医护人员和前线人员中安全性和免疫原性。第一位参与者于 2019 年 12 月 18 日入组并接种疫苗。在最后一次接种后 6 个月内收集了严重不良事件。 EBOV 糖蛋白 FANG ELISA(丝状病毒动物非临床组酶联免疫吸附试验)用于测量对 EBOV 糖蛋白的免疫球蛋白 G 结合抗体反应。结果。疫苗方案耐受性良好,未报告与疫苗相关的严重不良事件。第二剂接种后 21 天,95.2% 的参与者观察到 EBOV 糖蛋白特异性结合抗体反应。结论。2 剂疫苗方案耐受性良好,并在 Boende 完全接种疫苗的医护人员和前线人员中产生了高抗体反应。关键词。Ad26.ZEBOV;MVA-BN-Filo;医护人员和前线人员;安全性和免疫原性;埃博拉疫苗试验。
分子表示学习(MRL)长期以来在药物发现和材料科学领域至关重要,并且由于自然语言处理(NLP)和图形神经网络(GNN)的发展,它取得了重大进展。nlp将分子视为一维顺序令牌,而GNN则将它们视为二维拓扑图。基于通过不同的消息传递算法,GNN在检测化学环境和预测分子特性方面具有各种性能。在此,我们提出了定向的图形注意力网络(D-GAT):具有定向键的表达性GNN。我们策略成功的关键是按照指示图处理分子图,并通过缩放的点 - 产物注意机制来更新键状态和原子状态。这使模型可以更好地捕获分子图的子结构,即官能团。与其他GNN或消息传递神经网络(MPNN)相比,D-Gats的表现优于15个重要分子属性预测基准中的13个。
尽管已开发出多种疫苗来遏制严重急性呼吸道综合征冠状病毒 2 (SARS-CoV-2) 在人类中的传播,但为动物(包括宠物)开发的疫苗却非常少。为了对抗人与动物、动物与动物和动物与人之间传播的威胁以及新的病毒变种的产生,我们开发了一种亚单位 SARS-CoV-2 疫苗,该疫苗基于在昆虫细胞中表达的重组刺突蛋白胞外结构域,然后与适当的佐剂配制而成。将 16 只 8–12 周龄的杂交雌性和雄性小猫(每组 n = 4)随机分为四个治疗组:仅刺突蛋白;刺突加 ESSAI 水包油 (O/W) 1849102 佐剂;刺突加氢氧化铝佐剂;和 PBS 对照。所有动物均间隔 2 周肌肉注射两次疫苗,每次注射 5 µ g 刺突蛋白,体积为 0.5 ml。在第 0 天和第 28 天,采集血清样本以评估抗刺突 IgG、抗体对刺突与血管紧张素转换酶 2 (ACE-2) 结合的抑制、针对野生型和 delta 变异病毒的中和抗体以及血液学研究。在第 28 天,所有组均通过鼻内方式接种 SARS-CoV-2 野生型病毒 10 6 TCID 50。在第 31 天,采集组织样本(肺、心脏和鼻甲)进行病毒 RNA 检测和病毒滴度测定。两次免疫后,两种疫苗均诱导高滴度血清抗刺突 IgG,可抑制刺突 ACE-2 结合并中和野生型和 delta 变异病毒。两种佐剂疫苗配方均能保护幼猫免受上呼吸道病毒的排出以及下呼吸道和心脏病毒的复制。这些令人鼓舞的数据值得继续评估疫苗保护猫免受 SARS-CoV-2 感染的能力,特别是防止传播的能力。
背景:在热带和亚热带国家的人们中,疟疾仍然是数十年来的主要健康问题。恶性疟原虫是引起严重疟疾并应对主要死亡率的关键物种之一。此外,该寄生虫对所有推荐药物和疗法的人产生了抵抗力。因此,迫切需要采用可靠疫苗的形式采取预防措施,以实现疟疾自由世界的目标。表面蛋白是亚基疫苗开发的可取选择,因为它们是由宿主免疫细胞迅速检测和参与的。此外,丰富的表面或膜蛋白可能会导致疫苗诱导的抗体对病原体的调整。结果:在我们的研究中,我们列出了文献中所有这些表面蛋白,这些蛋白可能在功能上很重要且对于疟原虫的感染和免疫逃避至关重要。八个质子表面和膜蛋白来自前肌细胞和红细胞阶段。使用免疫信息工具预测了这些蛋白质的三十七个七个表层(B-细胞,CTL和HTL表位),并与合适的肽接头一起设计疫苗构建体。tlr -4激动剂肽佐剂,然后是Padre序列和EAAAK接头。TLR -4受体与构造的预期模型结构对接。在模拟的生理环境下,发现疫苗和TLR -4的复合物,最低的能量-1514。结论:这项研究提供了一种新型的多源构建体,可以进一步利用,以开发疟疾的有效疫苗。
康复和接种血清的免疫原性针对临床造成的临床隔离,祖先SARS-COV-2,Beta,三角洲和Omicron变体2 3 Arinjay Banerjee 1,2,3,*,Jocelyne lew 1,liw 1,andrea kroeker 1,andrea kroeker 1,andrea kroeker 1,kaushal baid 1,kaush baid 1,patrick aftich ahah nirm nirm nirm nirm Ryan McDonald 8,Amanda Lang 8.9,5 Volker Gerdts 1.2,Sharon E. Straus 10.11,Lois Gilbert 12,Angel Xinliu li 12,Mohammad 6 Mozafarihasjin 12,Sharon Walmsley 13,Anne-Claude 13,Anne-Claude 12,14,Jeffrey L. Wrana 12,14,Tony 7,tony 7,盖尔7,12,15;加拿大萨斯喀彻温省萨斯卡通 S7N 11 5E3 12 2 萨斯喀彻温大学兽医微生物学系;萨斯喀彻温省萨斯卡通 S7N 5B4,13 加拿大 14 3 滑铁卢大学生物系;加拿大安大略省滑铁卢 N2L 3G1 15 4 共享医院实验室;加拿大安大略省多伦多 M4N 3M5 16 5 Sunnybrook 研究所;加拿大安大略省多伦多 M4N 3M5 17 6 达尔豪斯大学计算机科学学院;加拿大新斯科舍省哈利法克斯 B3H 4R2 18 7 多伦多大学实验室医学和病理生物学系;加拿大安大略省多伦多 19 M5S 1A8 20 8 萨斯喀彻温省卫生局 Roy Romanow 省实验室;里贾纳,SK,S4S 0A4,21 加拿大 22 9 萨斯喀彻温大学医学院;加拿大萨斯喀彻温省萨斯卡通 S7N 5E5 23 10 多伦多大学医学系;加拿大安大略省多伦多 M5S 3H2 24 11 Unity Health;加拿大安大略省多伦多 M5B 1W8 25 12 西奈医疗系统;加拿大安大略省多伦多 M5G 1X5 26 13 大学健康网络;加拿大安大略省多伦多 M5G 2C4 27 14 多伦多大学分子遗传学系;加拿大安大略省多伦多 M5S 1A8 28 15 多伦多大学达拉拉纳公共卫生学院;加拿大安大略省多伦多 M5S 1A1 29 30 *通信地址:arinjay.banerjee@usask.ca (AB) 和 darryl.falzarano@usask.ca (DF)
摘要:DNA 疫苗与其他类型的疫苗相比具有固有的优势,包括安全性、快速设计和构建、易于制造和快速生产以及热稳定性。然而,通过针头和注射器输送的候选 DNA 疫苗的一个主要缺点是与 DNA 的低效细胞摄取相关的较差的免疫原性。这种摄取至关重要,因为目标疫苗抗原是在细胞内产生的,然后呈递给免疫系统。已经采用了多种技术来增强 DNA 疫苗的免疫原性和保护效力,包括物理输送方法、分子和传统佐剂以及基因序列增强。无针注射系统 (NFIS) 是一种有吸引力的替代方案,因为它可以诱导强大的免疫原性、增强的保护效力并消除针头。这些优势使该领域取得了里程碑式的成就,一种仅通过 NFIS 输送的针对 COVID-19 的 DNA 疫苗被批准在紧急情况下限制使用。在本综述中,我们讨论了 DNA 疫苗的物理递送方法,重点介绍了市售的 NFIS 及其安全性、免疫原性和保护效力。正如所讨论的,与针头和注射器相比,NFIS 递送的预防性 DNA 疫苗往往会诱导不低于电穿孔的免疫原性和增强的反应。