分子表示学习(MRL)长期以来在药物发现和材料科学领域至关重要,并且由于自然语言处理(NLP)和图形神经网络(GNN)的发展,它取得了重大进展。nlp将分子视为一维顺序令牌,而GNN则将它们视为二维拓扑图。基于通过不同的消息传递算法,GNN在检测化学环境和预测分子特性方面具有各种性能。在此,我们提出了定向的图形注意力网络(D-GAT):具有定向键的表达性GNN。我们策略成功的关键是按照指示图处理分子图,并通过缩放的点 - 产物注意机制来更新键状态和原子状态。这使模型可以更好地捕获分子图的子结构,即官能团。与其他GNN或消息传递神经网络(MPNN)相比,D-Gats的表现优于15个重要分子属性预测基准中的13个。