虽然消息传递图神经网络会导致信息丰富的节点嵌入,但它们可能无法描述图的拓扑特性。为此,节点滤波已被广泛用作使用持久图获得图的拓扑信息的一种尝试。然而,这些尝试面临着失去节点 - 床上用品信息的问题,这反过来又阻止了它们提供更具表现力的图表。为了解决这个问题,我们将重点转移到边缘效果上,并引入了一种新颖的基于边缘的持久性持续图,称为拓扑边缘图(TED),该图被数学证明可以保留节点嵌入信息以及包含其他拓扑信息。要实现TED,我们提出了一种基于神经网络的算法,名为“线图越vietoris-rips”(LGVR)持久图,该图通过将图形转换为其线图来提取边缘信息。通过LGVR,我们提供了两个模型框架,可以应用于任何传递GNN的消息,并证明它们比Weisfeiler-Lehman型着色更强大。最后,我们从经验上验证了模型在几种图形分类和回归基准上的出色性能。关键字:图形神经网络,持久图,拓扑数据分析,Weisfeiler-Lehman测试,越野透 - rips过滤
抽象3D空间感知是在未知环境中执行任务的自动移动机器人的关键技术之一。其中,为自动移动机器人建造全球拓扑图是一项艰巨的任务。在这项研究中,我们提出了一种基于竞争性学习的未知数据分布的拓扑结构的方法,这是一种无监督的学习。为此,将基于自适应理论的拓扑聚类(ATC)避免灾难性忘记以前测量的点云,被用作学习方法。此外,通过扩展具有不同拓扑(ATC-DT)的ATC,具有多个拓扑结构,用于提取地形环境的可遍历信息,可以实现一种路径计划方法,可以达到未知环境中设置的目标点。在未知环境中进行的路径规划实验表明,与其他方法相比,ATC-DT可以仅使用测量的3D点云和机器人位置信息来构建具有高精度和稳定性的全球拓扑图。
基于嵌入方法的图形表示可以更轻松地分析网络结构,可用于各种任务,例如链接预测和节点分类。这些方法已被证明在各种环境中都是有效的,并且已成为图形学习领域的重要工具。这些方法易于实施,它们的预测会产生可解释的结果。但是,大多数图形嵌入方法仅依赖于图形结构信息,并且不考虑节点/边缘属性,从而限制其适用性。在本文中,我们提出了图理论设计,以将节点和边缘属性纳入拓扑结合,从而使图形装饰方法无缝地在属性图上无缝工作。为了找到给定属性图的理想表示形式,我们提出了原始网络中的增强特殊子图结构。我们讨论了所提出的方法的潜在挑战,并证明了其一些理论局限性。我们通过比较15个标准生物信息学数据集上的最先进的图形分类模型来测试方法的功效。与原始图上的结果相比,在增强图上,在增强图上的分类精度最高可提高高达5%的分类精度。©2023 Elsevier B.V.保留所有权利。