摘要:在法国格勒诺布尔建设新生态社区的框架内,正在建设一个创新的城市供热网络,旨在将低温变电站(47°C - 72°C)、200m² 太阳能热场、180kWh 相变材料 (PCM) 储热装置(基于管壳组件)和智能管理系统结合在一起。本文重点介绍城市供热网络 PCM 存储组件的设计和初步运行。设计简要介绍,重点介绍仪器、PCM 特性以及管壳式热交换器的热工水力特性。还介绍了针对不同功率(20kW、40kW、55kW、75kW、100kW)和入口温度(80°C、85°C)分析的充电循环,以及仅针对不同功率(25kW、40kW)分析的放电循环。该分析的结果用于确定系统的存储密度,在 56°C - 85°C 的温度范围内(不考虑绝缘),存储密度为 45kWh/m 3 (单个 PCM 为 69.7kWh/m 3 )。
摘要:已经开发了一种新型的压缩空气存储(CAES)系统,该系统与基于其进食水热系统的煤炭功率厂创新。在混合设计中,将CAES系统的压缩热转移到煤炭发电厂的饲料中,并在膨胀机被从煤炭发电厂采集的饲料加热之前被压缩空气。此外,扩张器的废气被用来加热煤炭发电厂的部分进食水。通过建议的集成,可以消除常规CAES系统的热量储能设备,并且可以改善CAES系统的性能。基于350兆瓦的超临界煤炭发电厂,对拟议的概念进行了热力学评估,结果表明,新CAES系统的往返效率和往返效率可以分别达到64.08%和70.01%。此外,还进行了灵敏度分析,以检查环境温度,空中压力,扩张器入口温度和煤炭功率负载对CAES系统性能的影响。上述工作证明,在各种条件下,新颖的设计有效,为CAES技术的发展提供了重要的见解。
数字 LED 显示屏显示文字和编码信息,即使从远处也易于理解。数字露点显示(DE080-375 上为数字)。空气入口温度显示 (DE080-375)。LED 通知用户干燥机处于节能模式。参数完全可编程,可根据用户需求进行个性化设置。多个警报(iDRY 上有 4 个,TDC 上有 14 个)监控干燥机运行,并带有警报 LED 指示。可编程用户警报。警报历史记录 (DE080-375),可记忆之前的 50 个警报。服务警告,通知用户应进行预防性维护。可在两个露点之间进行选择,在条件允许的情况下可实现更高的节能效果(例如夏季运行)。冷凝水排水控制(iDRAIN 或电子零损耗排水),包括手动排水测试功能。远程开/关功能。通用报警无电压触点 (DE080-375)。RS485 串行插座用于连接到 MODBUS 监控系统 (DE080-375)。
这项工作考虑了NA热管的各种功率转换入口温度(PCIT)为1100 K,1150 K和1200 K,而每种PCIT的LI热管,1100 K,1150 K,1150 K,1200 K和1400 K,并确定和分析了组合热交换器和反应器子系统的质量和压力损失。na显示出比相同几何形状的LI的总工作温度低,最大热量能力的五分之一。因此,整个基于NA的子系统最终的质量是基于LI的子系统的三倍,给出了所需的热管数五倍。在1100 K的低PCIT下,基于NA的子系统表现出最低的压力损失,因为较大的总横截面流域和相对较低的摩擦压力损失。但是,随着PCIT的增加,摩擦压力损失增加,导致1200 K PCIT的压力损失比基于LI的子系统更高。基于LI的子系统由于在此温度下的Brayton工作流体密度低,因此在1400 K PCIT处所有分析病例的压力损失最大。
摘要:高压加湿的循环可以结合高运行动力和高效率。当前的工作引入了这样一个循环,即甲板周期,它提供了必要的燃烧基础设施,可以在蒸汽丰富的氛围中在较宽的燃料品种上运行。详细介绍了循环配置,并在模拟结果的基础上进行了例证。在设计条件下的操作导致高于50%(较低的加热值(LHV))和高于2100 kW/kg空气的电力效率高于50%(较低的加热价值(LHV))(称为进气气)。灵敏度分析将周期性能确定为代表性参数的函数,这为将来的操作和设计改进提供了基础。至于任何燃气轮机循环,可以通过升高涡轮机入口温度,优化节能器的热量恢复并提高工作压力来有效提高托管电力效率。最后,将Topcycle的性能与等效操作参数下的最新组合周期(CC)进行了比较。上周期的电力效率高,功率密度较高,可以将其转移到较小的植物足迹和尺寸中,因此与CC相比,在同等功率输出下的投资成本较低。
摘要:风力涡轮机和光伏等可再生能源是环保能源供应的关键。然而,它们不稳定的电力输出对供应安全构成了挑战。因此,具有存储能力的灵活能源系统对于可再生能源的扩展至关重要,因为它们允许存储非需求产生的电力并根据需要重新转换和供应。为此,提出了一种新颖的发电厂概念,其中高温储能 (HTES) 集成在传统微型燃气轮机 (MGT) 的回热器和燃烧器之间。它用于在供应过剩时存储可再生能源,随后用于减少 MGT 运行期间的燃料需求。因此,污染物排放显著减少,同时电网稳定。本文提出了一项数值过程模拟研究,旨在研究 HTES 的不同存储温度和负载曲线对 MGT 性能(例如燃料消耗、效率)的影响。此外,还推导出相关操作点及其工艺参数,如压力、温度和质量流速。由于燃烧室的运行条件受 HTES 的强烈影响,本文对其对燃烧室可操作性的影响进行了详细的理论分析,并对第一个适合该化合物的燃烧室设计进行了实验研究,并在较高的入口温度条件下进行了测试。
这项研究研究了跨临界二氧化碳(CO 2)循环与常规地热双闪光循环的整合,以提高各种入口温度(225°C,250°C,275°C)的能量和充电效率。尽管地热双重闪光周期和CO 2跨临界周期都因其高效率和可持续性而被认可,但在不同的热条件下解决其合并性能的全面比较分析仍然很少。为了弥合这一研究差距,开发了一个详细的计算模型,以评估在各种操作场景下基础和集成系统的热力学行为。结果表明,集成系统在能源效率方面产生显着提高,基本周期为0.112、0.1265和0.1383,相比0.08436、0.1038和0.1197。exergy分析揭示了在较高温度下的潜在热效率挑战,因此需要进一步优化。该研究还探讨了分离器压力变化对系统性能的影响,这表明精确的压力管理可以大大增强功率输出。调查结果倡导更广泛地采用综合地热系统,强调了它们的潜力,以实质上提高可再生能源生产的效率,并提出了用于系统优化和环境影响评估的未来研究的途径。
使用可再生能源作为解决对化石燃料的能源依赖的解决方案需要创新的能源储存解决方案。在文献中提出的解决方案中,电热储能由使用跨临界 CO 2 循环的热泵和热机组成,水作为热能储存 (TES) 流体来储存显热,冰作为冷储存介质来储存潜热,这似乎很有前景。在本文中,使用 Aspen Plus V11 开发了该系统的稳态数学模型,并进行了验证并与文献中的结果进行了比较。然后利用参数敏感性分析研究了验证模型的性能,通过探索不同参数对多个效率指标的影响,最佳情况下实现了往返效率 (η RT ) 7.64 % 的改善。发现水轮机入口温度和热机最小压力对 η RT 改善的贡献最大,最小压力是可以通过使用具有较低冰点的冷 TES 介质进一步降低的压力。最后,评估了替代冷 TES 介质(冻结温度低于冰)对系统性能的影响。结论是,模型的 η RT 随着冻结温度的下降而下降,从 0 °C 时的 46.90 % 下降到 -20.19 °C 时的 44.90 %。因此,选择冻结温度低于冰的冷 TES 介质不会带来与模型的 η RT 相关的好处。
由于服务器和数据中心级别的功率密度不断增加,高性能计算服务器的热管理正成为数据中心冷却行业面临的普遍挑战。高效散热也与电子封装可靠性直接相关。由于水基冷却剂的热性能更高,直接芯片液体冷却等改进的冷却技术可以满足不断增长的冷却需求。使用动态冷却概念,实验研究了一种进一步提高直接液体冷却 (DLC) 效率的方法。开发了一种流量控制装置 (FCD),用于使用陶瓷加热器调节流向四个定制热测试车辆 (TTV) 的流量。TTV 组件被放置在标准 19 英寸信息技术设备 (ITE) 机架的四个不同高度,位于安装有冷板的测试夹具中。每个 TTV 的流量调节是基于每个 TTV 的功耗进行的。每个 TTV 的功耗因整个机架中各种非均匀功率分布值而变化。分析了冷却剂入口温度和流速对 TTV 温度和机架压降的影响。结果表明,TTV 上的温度更加均匀,最大功率时 TTV 上的最高温度降低。还通过将所得结果与已发表的文献进行比较,分析了温度均匀性对封装级可靠性的影响。
旨在将温室气体排放到零净的旨在将温室气体排放减少到零的能源过渡运动一直在日本和海外加速(1)。为了实现这一目标,必须传播可再生能源的使用。但是,可再生能源有一个不利的,因为它容易受到各种不同因素,包括天气,这会导致负载变化。为了补偿这种弱点,对燃气轮机组合循环(GTCC)发电的期望有上升,该发电量能够快速启动和高热效率。为了提高GTCC发电的热效率,MHI集团已成为“ 1,700°C级超高温度的燃气轮机组件技术开发”国家项目的一部分。自2011年以来,该项目中开发的高级TBC已用于1600°C级的J系列燃气轮机,该公司已经运行了超过100万小时,并成功证明了高度的可靠性。此外,在2020年1月,三菱的力量开始调试下一代高效燃气轮机“ JAC(J-Series air冷却)”(2),该燃烧器通过使用强制性压缩率提高的强制性空气冷却系统来实现世界上最高的1650°C的涡轮机入口温度,并提高了高压速率的厚度(并提高)。这款涡轮机是基于J系列的,该系列具有可靠的技术和长期的现场操作。本报告将描述对JAC完成至关重要的先进TBC技术。