我们保卫世界上最伟大的国家——一个建立在为所有人提供机会的承诺之上的民主国家。这个国家的人口结构与我们生活的环境相似——不断变化——国防部必须做出改变,以维持和维持其未来的力量。只要我们真正代表了我们的民主,我们就是一支更强大、更有意义的力量。国防部将多样性视为一项战略要务。不同的背景和经历带来了本质上不同的观点和思维方式,这是组织创新的关键。我们通过利用所有成员的多样性并创造一个包容性的环境来获得战略优势,在这个环境中,每个成员都受到重视并被鼓励提供对创新、优化和组织任务成功至关重要的想法。
在制定这项行动计划时,我们考虑了多种因素。其中最出乎意料的因素之一是 COVID-19 疫情,它在我们的规划过程中爆发了一半。有人问,为什么在全州各个角落成千上万的工人面临如此多的混乱和不确定性的时候,州政府应该把重点放在帮助相对较少的工人和社区上。这个问题最直接的答案是法律要求我们这样做。但更合适的答案是,这两个挑战的性质不同。而且,由于疫情对我们的经济和劳动力的主要影响几乎肯定会在煤炭转型的主要影响发生之前过去,所以我们没有理由不能同时解决这两个问题。人们希望,疫情是一种极其罕见的现象,需要社会各界做出非凡的回应——就像对自然灾害的回应一样。从字面上看,这些事件要求我们所有人放下手头的工作,以应对迫在眉睫且往往是生存的威胁。另一方面,从煤炭到电力的转变是能源经济根本转变的可预见结果。我们可以提前预见到它的到来。对于工人和社区而言,其影响与失去任何大型本地雇主或经济驱动力是一致的。科罗拉多州的历史上,农村地区都发生过这样的转变,部分原因是政府应对不力(或根本不应对),导致繁荣与萧条的循环不断延续,摧毁了家庭和社区。我们认为,政府的基本义务是应对这两种挑战——一种是紧急威胁我们公民健康和安全的挑战,另一种是更可预测地随着时间推移因经济的根本性转变而出现的挑战。除非在最极端的情况下,否则不应将一种挑战排除在另一种挑战之外。
塞拉俱乐部委托对清洁能源组合进行独立评估,该组合可以在独立和白崖发电站退役后满足 AECC 的可靠性和能源需求。该分析使用 GenX,这是麻省理工学院和普林斯顿大学的研究人员开发的开源电力系统评估模型,用于评估能源系统如何整合可再生能源、存储和其他技术。该模型可用于评估可再生能源和存储的组合如何满足电力公司的每小时需求。在本例中,该模型用于评估 AECC 的系统。我们的评估保守地假设 AECC 没有机会与 MISO 和 SPP 中的区域电力和容量市场互动,尽管它定期这样做。我们还将 AECC 的 MISO 和 SPP 部门之间的互动限制在仅 275 兆瓦的传输容量,反映了 AECC 对 SPP 需求的预测,该需求与 MISO“伪绑定”。这些保守假设的价值在于,该模型被迫构建替代投资组合,就好像 AECC 完全独立于市场,其系统中的 SPP 和 MISO 部分之间的互动有限,而这种立场通常需要更高的成本。我们的理由是,如果我们能够证明 AECC 可以构建一个独立于市场的具有成本效益的投资组合,那么任何共享的市场资源只会使投资组合更便宜。
I.在2024年6月3日至7日,针对东非地区数字整合计划(EA -RDIP,P176181)进行了项目实施支持任务(ISM)。作为该更广泛的地区项目的一部分,南苏丹共和国的混合动力(虚拟和面对面)任务于6月3日 - 7112023在南苏丹的朱巴举行。南苏丹的任务由Naomi 1-Lalewood(Tane Tean Leader,高级数字开发专家)领导,由Victor Kyalo(高级数字发展专家),Ariic David Reng(数字发展顾问),Michael Okuny(高级财务管理专家)和Ocheng Kenneth Kenneth Kaneth Kaunda Odek(高级生产专家)组成。Giacomo Assenza(网络安全专家)和Dereje Agonafir Hablewold(高级环保专家)和Jennifer Gui(南苏丹项目焦点,高级数字发展专家)实际上加入了任务。
EXHIBITOR SHOW ELIGIBILITY..................................................................................................................15 ENTRY INFORMATION & RULES................................................................................................................16 LIVESTOCK SHOW FEES............................................................................................................................20 EXHIBITOR ADMISSION信息...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................规定.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
摘要 - 机器学习在决策过程中的广泛采用引起了人们对公平性的担忧,尤其是对敏感特征和对少数群体的潜在歧视的治疗。软件工程社区的反应是开发面向公平的指标,经验研究和方法。但是,在整个机器学习生命周期中,理解和分类工程公平的做法仍然存在差距。本文介绍了一种新颖的实践目录,以解决从系统的映射研究中得出的机器学习中的公平性。该研究确定并分类了现有文献中的28种实践,将它们映射到机器学习生命周期的不同阶段。从该目录中,作者提取了可操作的项目及其对软件工程研究人员和从业者的影响。这项工作旨在提供全面的资源,以将公平考虑因素整合到机器学习系统的开发和部署,增强其可靠性,问责制和信誉。
人工智能(AI)可以在向预测,预防和个性化医学转变的转变中发挥至关重要的作用,前提是我们受到患者投入的科学的指导。患者报告的结果指标(PROM)代表了一个独特的机会,可以从患有健康状况的人们那里捕捉经验知识,并使其与所有其他利益相关者具有科学意义。尽管如此,使用标准化结果的吸收有限,包括研究和医疗保健系统中的舞会。本观点文章讨论了大规模使用舞会的挑战,重点是多发性硬化症。AI方法可以通过检查目前提供的护理卫生系统以及加速研究和创新来实现学习卫生系统,从而改善护理质量。但是,我们认为,无论是与研究,临床实践还是卫生系统政策有关的AI的进步至关重要,不是孤立地开发出来,而是与他们合作地实施“对“人”。与患者投入的科学实施是全球多发性硬化症(PROM)倡议的核心,将确保我们最大程度地利用AI对MS的人的潜在利益,同时避免后果。
数据护理研讨会系列是跨学科和跨部门对话的动态论坛,旨在通过拥抱护理原则来解决公平AI开发和部署的障碍:集体利益,控制,责任和道德的权力。通过超越批评,该混合动力系列旨在激发可行的见解和创新策略,以建立负责任,可持续和包容的AI系统。重点关注多数世界和其他代表性不足的群体,该活动系列汇集了学术界,设计和技术行业的思想领袖,以及公民和政策领域,以探索为公平AI期货的合作创新的关键途径。这是数据护理研讨会系列的第一个,该系列的重点是生成AI工具对具有其他性别认同的妇女,女孩和人员的影响,特别关注全球南方的人群和其他在这些系统的设计和部署中的人口中的人口。我们关注Genai工具在加强和挑战性别不平等方面的含义,并关注工具对隐私,安全,自由和赋权的影响。这个就职研讨会探讨了减轻性别危害和暴力的跨文化,跨学科和跨部门的策略,目的是确保AI系统优先考虑妇女,女孩和边缘化性别群体的需求和权利,以支持其数字福祉和蓬勃发展。此外,我们将通过企业家创新,新颖的设计方法和激进运动来探索创造性的方法来恢复欲望和愉悦。这些鼓舞人心的努力将为可行的途径铺平道德,包容和性别响应的AI创新。
•H.B.252消除了适用于500,000美元以下的收入的较低的4.8%的公司所得税率,所有收入组的统一率为5.9%,于2025年1月1日生效。•H.B.252扩大该州的公司所得税基础,包括f子部分收入在2025年1月1日生效。•该立法还缩小了从水边缘申请小组中排除的所有公司,这些公司的财产,薪资和销售额不到其20%的财产,薪资和销售,这些公司属于美国境内或在美国以外的公司或其财产或领土内有组织或成立的公司,而该公司或其物业,薪资少于销售,销售境内的公司,境内销售范围不到销售,销售境地,境内销售境地,境地销售境地销售境地。•立法消除了从事某些发电的纳税人的单个销售要素分配规则的日期日期,从而使他们能够永久按单个销售要素选择分配业务收入。•H.B.252扩大了某些现有的税收抵免,并创建了与地热耦合热泵,地热电发电单元,电动汽车和电动汽车充电单元有关的几个新税收抵免。
减轻对亚群体的歧视。1 人们可能倾向于认为,只需从决策支持系统中省略敏感属性也能解决公平问题。然而,这是一个常见的误解:一些非敏感属性充当了代理(例如,工资是性别的代理,邮政编码是民族的代理,家庭结构是种族或宗教的代理),因此,即使不了解敏感属性的决策支持系统也被认为是不公平的。本文的目的是向信息系统从业者和研究人员介绍“公平的人工智能”。如上所述,信息系统内有多个领域容易出现不公平现象。事实上,信息系统维持甚至强化了人工智能中现有的不公平现象,而不是减轻它。在依赖这样的信息系统时,企业和组织面临着巨大的法律风险。在这方面,世界各地的立法机构都在实施法律,禁止在算法决策中进行差别对待(White & Case 2017);例如,在美国,公平贷款法对风险评分中的算法偏见进行惩罚,而在欧盟,人工智能的责任由通用数据保护条例(GDPR)强制执行。因此,实现公平的人工智能对于歧视的潜在受害者和依赖人工智能进行决策支持系统的机构都至关重要。最近的报告指出,企业、组织和政府对公平人工智能的采用已经落后(AI Now Institute 2018)。正如我们稍后讨论的,这种进展缓慢的潜在原因在于信息系统的所有维度,即人(例如信任)、技术(例如设计原则、经济影响)和组织(例如治理)。在以下章节中,本文将回顾公平的理论概念,将它们与人工智能的公平性联系起来,并为信息系统研究提出建议。
