Loading...
机构名称:
¥ 1.0

信息系统 (IS) 目前正在经历根本性转变:直到最近,决策支持都是基于规则的确定性算法开发的。然而,随着人工智能 (AI) 的最新进展,这些决策规则已被概率算法(例如深度学习;参见 Kraus 等人)取代。2020 )。概率算法通过从数据中学习现有模式进行推理,一旦部署,就会在某些不确定性下为看不见的数据提供预测。因此,它们容易产生偏见和系统性不公平,从而对个人或整个群体进行差别对待。先前的研究已多次证明人工智能应用缺乏公平性。例如,研究发现,信贷贷款申请的决策支持系统对某些社会人口群体存在不成比例的偏向 (Hardt and Price 2016; O'Neil 2016 )。

公平的人工智能

公平的人工智能PDF文件第1页

公平的人工智能PDF文件第2页

公平的人工智能PDF文件第3页

公平的人工智能PDF文件第4页

公平的人工智能PDF文件第5页

相关文件推荐

1900 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2023 年
¥3.0
2024 年
¥4.0
2023 年
¥1.0
2013 年
¥3.0
2024 年
¥1.0
2023 年
¥5.0
2023 年
¥2.0
2020 年
¥9.0
2024 年
¥4.0
2022 年
¥3.0
2021 年
¥6.0
2023 年
¥1.0
2024 年
¥3.0
2024 年
¥1.0
2021 年
¥1.0
2023 年
¥1.0
2020 年
¥3.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥11.0
2024 年
¥2.0