支持共价抑制剂药物发现/设计的工具的最新进展以及奥希替尼和伊布替尼等重磅药物的成功,导致人们对“亲电试剂优先”共价药物发现的兴趣日益浓厚。通过完整蛋白质质谱 (MS) 进行共价片段筛选已被证明是一种强大的工具,KRAS(G12C) 抑制剂的发现证明了这一点 [1]。支持共价片段筛选的其他检测方法,包括通过 GSH 检测评估弹头反应性以及通过蛋白酶消化和肽图分析识别结合位点,可进一步优化命中率。共价抑制是时间依赖性的,因此效力的首选测量方法是二级速率常数 kinact/Ki,而不是 IC50。
摘要:靶向共价抑制剂 (TCI) 在候选药物和化学探针中越来越受欢迎。在目前的 TCI 中,所采用的化学方法主要限于标记半胱氨酸和赖氨酸侧链。酪氨酸是 TCI 的一个有吸引力的残基,因为它在蛋白质-蛋白质界面富集。在这里,我们研究了环亚胺 Mannich 亲电试剂作为共价弹头的效用,以特异性地靶向与抑制剂结合口袋相邻的蛋白质酪氨酸。我们表征了几种环亚胺与酪氨酸的固有反应速率,并确定亚氨基内酯适合用作共价抑制剂(二级速率常数为 0.0029 M -1 s -1 )。我们将环亚胺弹头附加到 CBX8 染色质结构域抑制剂上以标记非保守的酪氨酸,这显著提高了抑制剂在体外和细胞中对 CBX8 的效力和选择性。这些结果表明,曼尼希亲电试剂是酪氨酸生物共轭和共价抑制剂的有前途和强大的化学弹头
生成化学信息学采用人工智能模型,例如生成对抗网络 (GAN) 和变分自动编码器 (VAE),来创建具有所需特性的新型分子结构。这些算法从现有的化学数据集中学习,并可以提出针对特定药代动力学和药效学特征优化的分子。与传统的随机筛选方法不同,生成模型允许定向探索化学空间,从而大大缩短识别先导化合物所需的时间。这种分子调整能力在解决生物利用度差、脱靶效应和毒性等挑战方面特别有价值,这些挑战通常会阻碍药物开发。
延长化合物的暴露时间,同时限制脱靶毒性。在 I 期研究中,Rilzabrutinib 显示出 3.20 小时的快速消除半衰期 (t 1/2 ) 6。尽管清除速度很快,但 Rilzabrutinib 在 BTK 上的延长停留时间 (14 小时) 可确保持续的靶标抑制 7。在 ITK (43 分钟) 和 HER4 (3.75 小时) 上的较短停留时间意味着任何初始的脱靶结合都可以快速逆转。这种动力学选择性与快速消除相结合,有助于减少脱靶效应的持续时间和影响,从而提高药物的安全性。因此,Rilzabrutinib 的治疗窗口最大化。不良副作用的可能性最小化,耐受性提高,同时在较长时间内保持疗效。
2023 年 4 月 15 日 — 源自伦敦色散的不带电原子迫使疏水相互作用 – 不是在 0 K 真空中可测量的真实(物理)相互作用,但...
为了证明开发的D-PCLIP的有用性,我们创建了DNA适体酶复合物作为DNA蛋白复合物的模型。具体而言,我们认识到人类血红蛋白(HB),这是DNA适体的疾病标志物之一,旨在使用葡萄糖氧化酶(GOX)使用化学发光来检测它。使用制备的DNA适体配合物检测到Hb,并在缓冲液和血清中确认高线性范围为6.3-50 nm(图2)。这表明可以测量临床所需的检测范围。此外,已经证实,该系统在电化学检测中的应用(可以在较短的时间内进行测量)也可以测量临床所需的检测范围。此外,为了验证D-PCLIP的多功能性,使用三种类型的DNA适体和两种酶创建了总共四种类型的DNA适体 - 酶复合物,并进行了功能评估。结果,已经证实,这两个配合物都保留了两者的功能。未来的发展:在这项研究中,我们开发了一个D-PCLIP,它可以不可逆地复杂DNA和蛋白质一对一。络合反应仅通过在4°C下进行混合而进行,从而易于生产保持这两种功能的DNA蛋白质复合物。此外,由于UDGX的DNA结合反应在DNA的乌拉西尔组中特别进展,因此可以通过调整乌拉西尔基团的位置来轻松设计蛋白质的融合位置。 D-PCLIP可以自由地更改DNA和蛋白质的组合,因此预计将在各种未来的应用中使用。例如,通过在抗体和DNA之间创建复合物,可以将其应用于诊断技术,例如免疫PCR或药物,以递送细胞特异性DNA。
1 1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:1,德克萨斯州休斯顿市德克萨斯大学安德森癌症中心,德克萨斯州休斯敦2 Feinberg医学院和凯洛格管理学院,西北大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥3牵引力平台,治疗平台,Therapeutics Discovery Discoveript德克萨斯州休斯顿5号转化分子病理系,谢赫·艾哈迈德胰腺癌研究中心,德克萨斯大学医学博士学位安德森癌症中心,德克萨斯州休斯敦,6 6突破癌症,马萨诸塞州剑桥,马萨诸塞州剑桥,分子和蜂窝肿瘤学系,德克萨斯大学MD Anderson Center of Tex 7德克萨斯州休斯顿市贝勒医学院 *联合首先作者#共同对应作者:Raghu Kalluri,医学博士,博士电子邮件:rkalluri@mdanderson.org Timothy P. Heffernan,博士电子邮件:
摘要:卟啉环模拟了天然的捕光叶绿素阵列,为电子离域提供了见解,为制造具有紧密间隔的卟啉单元的更大纳米环提供了动机。在这里,我们展示了完全由 5,15 连接卟啉组成的大环的首次合成。该卟啉十八聚体是使用共价六臂模板构建的,该模板由钴催化的 H 型二苯并噻嗪环三聚化制成,末端为卟啉三聚体。纳米环周围的卟啉通过分子内氧化中消旋偶联和部分 β-β 融合连接在一起,形成由六个边缘融合的锌 (II) 卟啉二聚体单元和六个未融合的镍 (II) 卟啉组成的纳米环。金表面的 STM 成像证实了辐条 18-卟啉纳米环的尺寸和形状(计算直径:4.7 纳米)。
摘要:SARS-CoV-2 木瓜蛋白酶样蛋白酶 (PLpro) 对病毒处理和免疫反应破坏至关重要,是治疗急性 SARS-CoV-2 感染的一个有希望的靶点。迄今为止,尚无关于同时具有亚微摩尔效力和动物模型功效的 PLpro 抑制剂的报道。为了解决 PLpro 无特征活性位点的挑战,开发了一个包含 50 多种新类似物的非共价抑制剂库,通过调节 BL2 环和接合 BL2 沟来靶向 PLpro 活性位点。值得注意的是,化合物 42 和 10 表现出强的抗病毒作用,并进一步进行了药代动力学分析。特别是 10 表现出显着的肺蓄积,高达血浆暴露量的 12.9 倍,并且对小鼠 SARS-CoV-2 感染模型以及几种 SARS-CoV-2 变体有效。这些发现凸显了 10 作为体内化学探针在研究 SARS-CoV-2 感染中 PLpro 抑制作用的潜力。■ 简介