功能性磁共振成像 (fMRI) 中的一个关键问题是从嘈杂的高维信号中估计空间活动模式。空间平滑提供了一种规范化此类估计的方法。然而,标准平滑方法忽略了神经活动的相关性在不同的脑区可能以不同的速率下降,或者在解剖或功能边界上表现出不连续性的事实。此外,这种方法没有利用这样一个事实,即相距甚远的脑区可能由于双侧对称或脑区网络组织而表现出强相关性。为了捕捉这种非平稳空间相关结构,我们引入了脑核,一种用于全脑活动模式的连续协方差函数。我们将脑核定义为从 3D 脑坐标到潜在嵌入空间的连续非线性映射,用高斯过程 (GP) 参数化。脑核将体素之间的先验协方差指定为它们在嵌入空间中位置之间距离的函数。 GP 映射以非线性方式扭曲大脑,使高度相关的体素在潜在空间中靠得很近,而不相关的体素则相距很远。我们使用静息状态 fMRI 数据估计大脑内核,并开发一种基于块坐标下降的精确、可扩展的推理方法来克服高维(10-100K 体素)的挑战。最后,我们通过多任务 fMRI 数据集的大脑解码和因子分析来说明大脑内核的实用性。
摘要:我们报告了一种新的多GPU从头算,hartree- fock/密度功能理论实现将整体化为开源量子相互作用计算内核(快速)程序。详细介绍了电子排斥积分的负载平衡算法和多个GPU之间的交换相关性。进行了多达四个GPU节点进行的基准测试研究,每个节点包含四个NVIDIA V100-SXM2型GPU表明,我们的实力能够实现出色的载荷平衡和高平行的效率。对于代表性的培养基到大蛋白/有机分子系统,观察到的平行官方率在Kohn- -假基质形成中保持在82%以上,而对于核梯度计算,则保持高于90%。在所有经过测试的情况下,NVIDIA A100,P100和K80平台上的加速度也已经实现了高于68%的平行官方,这为大规模的初始电子结构计算铺平了道路。
摘要:运动图像(MI)促进运动学习,并鼓励大脑 - 计算机接口系统,这些系统需要进行脑电图(EEG)解码。但是,需要长时间的培训来掌握脑部节奏的自我调节,从而导致使用MI不确定的用户。我们介绍了一种基于参数的跨受试者转移学习方法,以改善基于MI的BCI系统中表现不佳的个体的性能,通过内核 - 汇总标记的EEG测量结果和心理问卷来汇总数据。为此,实施了用于MI分类的深层神经网络,以从源域预先培训网络。然后,将参数层转移,以在细胞调整过程中初始化目标网络,以重新计算基于多层感知的精度。要执行将分类特征与实价功能相结合的数据融合,我们通过高斯 - 插入实现了逐步的内核匹配。最后,根据受试者考虑其对BCI运动技能的影响,探索表现最出色的受试者(源空间)的两个选择策略,选择了对基于差异的集群的配对源 - 目标集来进行评估目的:单个受试者:单件受试者和多个受试者。针对判别MI任务获得的验证结果表明,即使包含问卷数据,引入的深层神经网络也具有准确性的竞争性能。
极端环境条件,例如温泉,深海水热通风孔和有机堆肥是独特的微生物多样性的储层,为释放具有理想特性的新酶提供了潜力。微生物群落对这些环境条件的适应解释了它们的高基因组和代谢灵活性,并且它们经常用适合许多应用的新型酶编码酶[1]。这项工作的目的是从堆肥元组中搜索CRISPR-Cas9 DNA核酸酶的同源物。此类同源物可能对开发系统来编辑这种人工生物植物的各种细菌的基因可能很有趣。这些酶必须是热耐剂,因为堆肥期间的温度升高到90摄氏度或更多。耐热酶也可以用于编辑从其他极端生物型中分离出的细菌的基因组。使用此类序列的另一个额外奖励可以是使用热稳定的体外DNA编辑系统。对II型CRISPR-CAS9 DNA核酸内切酶的发现的TR(热固态)同源物的一项有趣的基础研究可以是对这些酶的结构研究,用于随后生产基于从堆肥组中提取的氨基酸序列的生物技术具有重要意义的突变体。
切片到体积重建(SVR)方法可以很好地处理运动伪像,并为胎儿脑MRI提供高质量的3D图像数据。但是,在SVR方法中,稀疏采样的问题并未很好地解决。在本文中,我们主要集中于从多个被运动伪影损坏的胎儿脑MRI稀疏体积重建。基于SVR框架,我们的方法包括Slice-volume 2D/3D注册,基于点差函数(PSF-)卷更新以及基于自适应内核回归的卷更新。自适应核回归可以很好地处理稀疏的采样数据,并通过通过协方差矩阵捕获局部结构来增强详细的保存。对临床数据进行的实验结果表明,核回归可通过结构灵敏度的参数设置为0.4,转向内核大小为7×7×7的稀疏抽样数据的图像质量提高,并转向平滑带宽0.5。所提出的基于GPU的方法的计算性能的速度超过90倍。
但是,定量性状是经济上重要的衡量表型特征,例如身高,体重,皮肤色素沉着,对病理疾病的易感性或人类智力的易感性;植物或动物产生的花,水果,种子,牛奶,肉或鸡蛋等。定量性状也称为度量特征。他们没有显示个人和形成一系列表型之间的明显切断的差异,这些表型毫无察觉地将一种从一种类型融合到另一种类型,以引起连续变化。与定性性状相反,定量性状可以通过环境条件进行多样化,通常受许多因素或基因(也许是10或I00或更多)的控制,每种都有少量的表型,以至于他们的个体效应无法通过Mendelian方法来检测到Mendelian方法,但仅由统计学方法检测到。
内核回归或分类(也称为机器学习中的加权ϵ -NN方法)对它们的简单性有吸引力,因此在数据分析中无处不在。ever,内核回归或分类的实际实现包括量化或子采样数据以提高时间效率,通常是以预测质量为代价。尽管在实践中有必要进行这种交易,但它们的统计含义通常尚未得到充分的了解,因此实际实施的实施很少。特别是尚不清楚是否可以维持内核预测的统计准确性(在某些应用中至关重要),同时改善预测时间。目前的工作提供了将内核预测与数据量化相结合的指导原则,以确保预测时间和准确性之间的良好贸易,尤其是为了近似维持香草内核预测的良好准确性。此外,我们的贸易保证是根据调整参数明确处理的,该调整参数可以作为旋钮,该旋钮根据实际需求而定于时间或准确性。在旋钮的一端,预测时间与单个最近邻居预测的顺序相同(在统计上是不一致的),同时保持一致性;在旋钮的另一端,预测风险几乎是最小的(就原始数据大小而言),同时仍降低时间复杂性。理论结果在来自一系列现实世界应用域的数据上得到了验证;特别是我们证明了理论旋钮的性能如预期的。因此,分析揭示了数据定量化方法与内核预测方法之间的相互作用,最重要的是,显式地控制了对从业者的贸易,而不是提前或使其不透明。
超特权模式(称为“监视”模式)允许控制从一个世界切换到另一个世界。像 Android 或 iOS 这样的富操作系统无需修改就可以在富端运行,其上还有大量的用户应用程序,而安全关键服务则可以在受保护的安全世界中运行。这个安全世界需要自己的操作系统,而操作系统不必像富端的操作系统那样多功能。例如,这种架构可用于在单个手机上将个人世界和专业世界分开,从而允许安全的自带设备 (BYOD) 策略。另一个可能的应用是为安全世界配备 Global Platform [4] 指定的可信执行环境 (TEE),它充当称为可信应用程序的安全服务的特定内核,例如 DRM 管理、密码功能等。
内核回归是一种良好的非线性回归方法,其中使用周围训练样品的加权平均值来实现测试点的目标值。通常通过将基于距离的内核函数应用于每个样品,从而获得了权重,该函数假定存在良好的距离。在本文中,我们构建了一种用于监督度量学习的新颖算法,该算法通过将剩余的重新介绍错误降至最低,从而学习了距离功能。我们表明,我们的算法使内核回归与几个基准数据集的最先进的状态进行了比较,并且我们提供了充分的实现详细信息,从而使应用程序可以应用于具有〜O(10K)内置的数据集。此外,我们表明我们的al-gorithm可以看作是PCA的监督变化,可用于降低降低和高度数据可视化。
