摘要。在过去的十年中,大规模的癌症法学研究强调了患者分子方案的多样性以及利用此信息在正确的时间向正确患者提供正确的药物的重要性。学习预测模型的关键挑战包括OMIC数据的高维度,可用数据点的限制以及生物学和临床因素的异质性影响患者反应。多任务学习(MTL)技术已被广泛探索以解决用于体外药物反应模型的数据集限制,而域适应性(DA)已被用来扩展它们以扩展它们以预测体内响应。在这两个转移学习设置中,与单任务(域)学习者相比,某些任务(或域)的嘈杂数据可以实质上为其他任务提供了绩效,即导致负转移(NT)。我们描述了一种新颖的多任务无监督的DO-主要适应方法(TUGDA),该方法通过量化预测变量的不确定性并加权其对共享域/任务特征表示的影响来解决统一框架中解决这些局限性。tugda的能力更多地依赖于低确定性的预测因子,与最先进的方法相比,体外模型的阴性转移病例显着减少了体外模型的负转移病例(63%的药物和94%的药物)。针对体内环境的域适应性,TUGDA在患者衍生的异种移植物中的12种药物中有6种改进了性能,尽管接受了无监督的方式接受培训,但在TCGA患者数据集中有22种药物中有7种。TUGDA避免负转移的能力,因此具有关键能力,因为我们试图将多种药物响应数据集整合在一起,以将一致的预测模型与体内效用构建一致的预测模型。
摘要:高压直流(HVDC)输电被称为绿色能源传输技术,由于其高功率传输能力和较低的功率损耗,近年来已成为高压交流(HVAC)的一种有吸引力的替代方案。近年来,复合绝缘子在直流(DC)输电线路上的使用迅速增长,因为它们具有高疏水性并且比传统陶瓷绝缘子在污染环境中表现更好。在直流线路上运行期间,由于单向电场的作用,绝缘子容易积聚更多的污染物。潮湿条件下的污染物会使漏电流在绝缘子表面流动。聚合物绝缘子本质上是有机物,在电和环境应力的共同作用下容易老化。为了充分了解直流复合绝缘子的长期老化性能,有必要进行详细调查。为此,本文批判性地总结了世界各地在现场和实验室条件下复合绝缘子老化性能的经验。
无人机在民用领域的应用越来越广泛。四轴飞行器是一种经过广泛研究的无人机,是新型控制技术的绝佳试验台。四轴飞行器的一些预期用途需要在受限环境中运行,其中物体与飞行器距离很近。在这些条件下,飞行会受到气动相互作用(力和扭矩)的影响。直观地讲,这些相互作用可以看作是气流从周围环境中反弹回飞行器。开发用于描述此类相互作用的有效计算方法仍有待改进,因为现有的精确模型需要大量的计算负荷,并且不能用于四旋翼飞行器的实时控制回路。这项研究假设,使用一个可以实时部署并近似气动相互作用行为的简化数学模型,可以改善四旋翼飞行器的飞行控制。为了证实这一假设,我们的目标是开发一种有效的气动相互作用模型,该模型可以从模拟和实验数据中检索出来。为解决这个问题,我们将探索三个主要知识领域:控制理论、人工智能和流体力学。作为初步进展,我们提出了非线性四旋翼控制的数值优化技术。
无人机在民用领域的应用越来越广泛。四轴飞行器是一种经过广泛研究的无人机,是新型控制技术的绝佳试验台。四轴飞行器的一些预期用途需要在受限环境中运行,其中物体靠近飞行器。在这些条件下,飞行会受到空气动力学相互作用(力和扭矩)的影响。直观地讲,这些相互作用可以看作是气流从周围环境中反弹回飞行器。由于现有的精确模型需要大量的计算负荷,并且不能用于四旋翼飞行器的实时控制回路,因此开发用于描述此类相互作用的有效计算方法仍有待改进。本研究假设,通过一个可以实时部署并近似气动相互作用行为的简化数学模型,可以改善四旋翼飞行器的飞行控制。为了证实这一假设,我们的目标是开发一种有效的气动相互作用模型,该模型可以从模拟和实验数据中检索。为解决这个问题,我们将探索三个主要知识领域:控制理论、人工智能和流体力学。作为初步进展,我们提出了非线性四旋翼控制的数值优化技术。