再生医学及其分支,再生美学一直是热门话题。对异性抛物率和其他人的研究表明,循环因子可以使衰老的组织恢复活力。已知干细胞具有再生能力,但它们很难在培养或维持中提取,生长。外泌体(EV),30至150 nm的细胞外囊泡已被发现是组织之间通信的一种主要形式。使用干细胞上清液产生理想的EV已成为美学处理的预示治疗方法。使用电动汽车的临床前研究表明,许多好处,包括更快地改善成纤维细胞和愈合伤口的功能。美学中用电动汽车的临床研究很少。因此,电动汽车产生的兴奋应以缺乏可用的治疗产品以及缺乏科学证明的现实主义来审查。
自我神经元的再生通常在神经元细胞损伤后受到限制或不存在,这使得对治疗神经系统损害的新技术。尽管大脑可以通过增加其可塑性来部分补偿,但这些补偿机制永远无法完全恢复预损伤状态。在神经系统疾病的情况下,分析有关干细胞疗法的文献。干细胞由于其再生能力而显示出治疗各种神经系统疾病和残疾的希望。在动物模型和早期临床试验中,移植或给药不同类型的干细胞已取得了令人鼓舞的结果。但是,对其实施仍然存在担忧。所使用的干细胞类型,最佳方法和途径,给药的干细胞数量,预处理和注射时间表都需要确定。此外,干细胞处理的长期安全性和接受者的年龄需要进一步研究。尽管存在这些问题,但干细胞疗法对治疗神经系统疾病仍然有很大的希望,并且持续的研究和设计良好的研究对于释放其全部潜力至关重要。
成年干细胞对于组织更新和再生很重要。然而,在大多数成人系统中,干细胞如何采用不同的功能状态并支持空间构造的组织结构仍然难以捉摸。在这里,我们阐述了成年斑马鱼大脑中神经干细胞的多样性,该器官以明显的分区和高再生能力为特征。我们将解剖大脑区域的单细胞转录组与大量平行的谱系跟踪和体内RNA代谢标记结合在一起,以分析时空中神经干细胞的调节。我们检测到了大量的神经干细胞,其中一些亚型仅限于单个大脑区域,而其他亚型则在整个大脑中被发现。全球干细胞状态与神经源分化有关,不同的态与增殖和非增殖性分化有关。我们的工作揭示了成人干细胞组织的原理,并为神经干细胞亚型的功能操纵建立了资源。
成年干细胞在维持组织稳态和促进寿命方面起着至关重要的作用。在肠道,肺和皮肤中成年上皮干细胞中的复杂组织和存在作为这些细胞的标志。这些细胞在其各自的器官中的特定位置模式突出了它们所居住的利基市场的重要性。细胞外基质(ECM)不仅提供了物理支持,而且还充当各种生化和生物物理信号的储层。我们将考虑这三个上皮的增殖,修复和再生能力的差异,并回顾环境提示如何从利基市场中出现的环境提示调节细胞命运。这些提示是通过机械信号,调节基因表达来转导的,并将我们带到命运支架的概念。了解在各种器官中控制干细胞命运的机制中的类比和差异都可以为复兴治疗和组织工程提供宝贵的见解。
摘要:骨膜被称为覆盖大多数骨表面的薄结缔组织。从第一世纪的研究中证实了其膨胀的骨骼再生能力。最近,揭露了具有独特生理特性的骨膜中的多能干细胞。存在于动态环境中,受复杂的分子网络调节,骨膜干细胞出现是具有强大的增殖和多重分化能力。通过对研究的持续探索,我们现在开始更深入地了解骨膜在骨形成和原位或异位修复中的巨大潜力。不可否认的是,骨膜正在进一步发展为一种更有希望的策略,可以在骨组织再生中利用。在这里,我们总结了骨膜,细胞标记物以及骨膜干细胞的生物学特征的发育和结构。然后,我们审查了它们在骨修复和基本分子调节中的关键作用。对骨膜相关的细胞和分子含量的理解将有助于增强骨膜的未来研究工作和应用转化。
利用人脑在生理衰老或神经系统疾病中的再生潜力的概念代表了增强或恢复大脑功能的传统策略的特别有吸引力的替代方法。但是,要解决的一个主要问题是,人脑是否确实具有再生能力。人类成年海马神经发生(AHN)的存在多年来一直是一场科学辩论的中心。单细胞转录组技术的出现最初被视为解决这一争议的灵丹妙药。然而,最近在人海马中的单细胞RNA测序研究产生了冲突的结果。在这里,我们批判性地讨论并重新分析了先前发表的与AHN相关的单细胞转录组数据集。我们认为,尽管很有希望,但人类大脑中AHN的单细胞转录组培养可能会被方法论,概念和生物学因素混淆,这些因素和生物学因素需要在研究中始终如一地解决并在科学界内公开讨论。
骨关节炎 (OA)、类风湿性关节炎 (RA) 和腰痛等肌肉骨骼疾病是全球第二大致残原因,给社会带来了沉重的生理和经济负担 [1,2]。这类疾病的特点是组织退化和炎症活动,可导致慢性疼痛和严重的关节损伤 [3]。具体而言,骨关节炎关节因其承重特性,最容易受到关节软骨退化和滑膜炎症的影响,久而久之会导致关节功能和活动能力丧失。炎性细胞因子[如白细胞介素 (IL)-1、IL-6、肿瘤坏死因子 α (TNF α )] 和降解酶[如基质金属蛋白酶 (MMP)13、具有血小板反应蛋白基序 5 的解整合素金属蛋白酶 (ADAMTS5)] 等生物因素的过度表达会加速骨关节炎的进展,尤其是在关节损伤的情况下 [4]。软骨的无血管特性限制了其自我再生能力;因此需要及时的治疗干预来修复组织并抑制病情进一步进展 [5]。
与年龄相关的肌肉干细胞(MUSC)再生能力的减少与细胞自主和非细胞自主变化有关,这是由于全身和骨骼肌环境改变而导致的,最终导致MUSC数量和功能下降。先前的研究表明,通过在激活的MUSC中进行自噬,STAT3在损伤激活再生后驱动MUSC扩张和分化方面起着关键作用。然而,自噬在寿命中逐渐下降,并导致MUSC介导的老年肌肉再生受损。在这里,我们表明STAT3抑制作用恢复了老年MUSC的自噬过程,从而恢复了MUSC促进老年小鼠肌肉再生的能力。我们表明,通过促进自噬相关基因的转录以及在细胞质水平的转录,可以通过靶向EIF2α的STAT3/PKR磷酸化来激活核水平的自噬。这些结果表明STAT3 Inhi-Bition是一种潜在的干预措施,以扭转与年龄相关的自噬块,从而破坏MUSC再生肌肉的能力。他们还揭示了STAT3通过转录依赖性和独立的自噬调节来调节MUSC功能。
摘要:遗传性视网膜变性疾病包括相对常见的 Stargardt 病和罕见的视网膜色素变性等,在遗传上具有极大的异质性。迄今为止,已发现 100 多种不同的基因和数千种不同的致病突变。这些疾病的共同特征是外层神经视网膜的光感应感光细胞最终死亡。由于视网膜的内在再生能力很差,感光细胞死亡会导致不可逆的视力丧失。幸运的是,分子遗传学、基因组编辑、干细胞生物学和组织工程领域的科学进步让我们有理由对被诊断为遗传性视网膜变性的患者的未来感到乐观。在这次演讲中,我将讨论我们小组的工作,重点是使用患者来源的诱导性多能干细胞对遗传性视网膜变性患者进行分子诊断、研究和治疗。具体来说,我将举例说明我们如何使用患者 iPSC 来评估新基因变异的致病性并开发修复性自体感光细胞替代方法。
修复韧带和肌腱(如韧带和肌腱)的结构软组织面临一些临床挑战。除了韧带和肌腱的血管化和再生能力较差外,还可以通过尽可能解剖的缝合锚来实现最佳固定。这意味着固定主要是在取消骨骼中,该区域的可及性和骨质质量有限。为了提早康复,应快速将关节重新固定,从而将锚点暴露于明显的疲劳和蠕变负荷。SupraFusion®技术为上述临床挑战提供了一种新方法。而不是使用螺纹或倒钩或类似的机械固定,而是借助超声波振动植入锚,从而导致锚锚的聚合物表面液化。纤维中聚合物的液化部分,并增强相邻的取消骨结构。演讲将提供对Suprafusion®技术的基本基础的见解,以及超声液化对生物相容性和生物力学行为的影响。基于当前的临床使用缝合锚,将讨论该技术为运动医学提供最小侵入性解决方案的潜力。
