摘要:在真实的三维虚拟环境中进行飞行测试越来越多地被认为是一种安全且经济高效的评估飞机模型及其控制系统的方法。本文首先回顾并比较了迄今为止最流行的个人计算机飞行模拟器,这些模拟器已成功与 MathWorks 软件对接。这种联合仿真方法可以将 Matlab 工具箱的功能优势(包括导航、控制和传感器建模)与专用飞行仿真软件的高级仿真和场景渲染功能相结合。然后可以使用此方法验证飞机模型、控制算法、飞行处理特性,或根据飞行数据执行模型识别。然而,缺乏足够详细的分步飞行联合仿真教程,而且很少有人尝试同时评估多种飞行联合仿真方法。因此,我们使用 Simulink 和三种不同的飞行模拟器(Xplane、FlightGear 和 Alphalink 的虚拟飞行测试环境 (VFTE))演示了我们自己的分步联合仿真实现。所有这三种联合仿真都采用实时用户数据报协议 (UDP) 进行数据通信,每种方法都有各自的优势,具体取决于飞机类型。对于 Cessna-172 通用航空飞机,Simulink 与 Xplane 的联合仿真演示了成功的虚拟飞行测试,可以精确地同时跟踪高度和速度参考变化,同时在任意风况下保持侧倾稳定性,这对单螺旋桨 Cessna 来说是一个挑战。对于中等续航能力的 Rascal-110 无人机 (UAV),Simulink 使用 MAVlink 协议与 FlightGear 和 QGroundControl 连接,从而能够在地图上精确跟踪无人机的横向路径,并且此设置用于评估基于 Matlab 的六自由度无人机模型的有效性。对于较小的 ZOHD Nano Talon 微型飞行器 (MAV),Simulink 与专为此 MAV 设计的 VFTE 连接,并与 QGroundControl 连接,以使用软件在环 (SIL) 仿真测试先进的基于 H-infinity 观察器的自动驾驶仪,从而在有风条件下实现稳健的低空飞行。然后,最终使用控制器局域网 (CAN) 数据总线和带有模拟传感器模型的 Pixhawk-4 迷你自动驾驶仪将其扩展到 Nano Talon MAV 上的硬件在环 (HIL) 实现。
跟 进 二 零 一 六 年 三 月 二 十 四 日 的 会 议 二 零 一 六 年 四 月 七 日 及 二 零 一 六 年 四 月 十 四 日 来 函 收 悉。来 函 要 求 政 府 提 供 英 国 国 家 航 空 交 通 服 务 有 限 公 司 (NATS) 于 二 零 一 五 年 十 二 月 以 “ 定 照 ” 方 式 为 新 航 空 交 通 管 理 系 统 ( 航 管 系 统 ) 所 作 的 检 讨 报 告 副 本。继 我 们 二 零 一 六 年 四 月 二 十 八 日 的 回 覆,我 们 现 提 供 “ 定 照 ” 方 式 检 讨 报 告 , 以 及 分 阶 段 推 行 新 航 管 系 统 的 第 一 阶 段 整 体 过 渡 准 备 状 况 的 最 新 评 估 报 告 。 两 份 报 告 载 于 附 件 A 及 B ( 只 备 英 文 版 ) 供 委 员 参 考 。 NATS 就“ 一次过推行” 新航管系统的“ 定照” 方式进行检讨2. 由运输及房屋局( 运房局) 委聘来自英国的独立顾问公司NATS , 根据二零一五年十二月的情况,就“一次过推行”新航管系统的做法, 以“ 定照” 方式完成有关系统就技术事宜、 运作及训练文件的检讨。 “ 一 次 过 推 行 ” 是 指 在 二 零 一 六 年 六 月 一 次 过 全 面 推 行 新 航 管 系 统 的 做 法 。 3. 在二零一五年十二月进行的“ 定照” 方式检讨,在假设新系统“ 一次过推行” 的前提下, NATS 的检讨结论认为航管系统在工程方面的表现, 与英国及新加坡等其他地区的航空交通管制中心( 空管中心) 的良好做法看齐。 NATS 当 时 ( 即 二 零 一 五 年 十 二 月 ) 提 出 一 些 意 见 , 当
行动 • 预计的无冰北极环境将对海军行动的安全性和有效性产生重大影响。这些影响将最明显地影响舰队长期执行行动的能力。虽然目前的任务范围可能会适用,但未来的系统必须适应对所需作战能力 (ROC) 和预计作战环境 (POE) 的重大修改,以进行扩展的极地作战。环境的建模和预测以及针对操作条件的平台设计修改将非常重要。• 极地 C4ISR 基础设施似乎是一个限制因素。需要专门的极地空间支持作战概念来为极地作战提供网络中心战能力。冰侦察应该是一个关键组成部分。• 扩展行动的后勤支持似乎是一个限制因素。必须增强有机航母船上交付/垂直船上交付 (COD/VOD) 能力和岸上基础设施,以保持当前的航行补给 (UNREP) 能力和所需的战斗节奏。• 需要新的传感器和武器性能能力来支持海底战争和打击战争。还需要新的传感器能力来支持利用其他战争领域的情报、监视和侦察水平。• 当前的环境测量和预测,包括北极天气和冰层预测、浅水声学性能预测和动态海洋环境变化,不足以支持北极更大规模的海军行动。需要重新关注天气和冰况的短程预报准确性。对合成孔径雷达 (SAR) 的依赖将增加,必须为其购买 (OM&N) 编制预算。• 海军目前没有在北极环境中对传统或正在开发的武器系统进行武器测试和评估。• 目前的寒冷天气/极地作战训练水平不足以进行长期作战。• 目前的图表和 GPS 支持计划不支持长期极地作战。除非解决这些不足之处,否则安全导航和精确武器投送能力都可能受到严重限制。• 目前的破冰船能力无法支持战斗群规模的部队进行长期极地作战。美国海军没有破冰能力,美国海岸警卫队只有三艘极地破冰船。破冰船应被视为扩展极地作战基础设施的重要组成部分。• 有限的机动空间和快速变化的天气条件将需要新的战术、技术和程序,这些必须在量身定制的极地训练评估中加以解决。需要经过极端天气和低能见度认证的自动导航系统。
背景费尔岛是英国最偏远的岛屿社区,位于设得兰群岛(39 公里)和奥克尼群岛(43 公里)之间。目前有 57 人居住在长 5 公里、宽 3 公里的岛上。该岛主要归苏格兰国家信托所有,绝大多数土地为小农耕地。该岛以费尔岛针织品和费尔岛鸟类观察站而闻名,吸引了来自四面八方的游客(鸟类和观察员)。FICA 于 2014 年夏季启动了一项社区发展计划,以应对一系列凸显的问题,包括最近人口下降到 55 人左右以及岛上年龄结构的变化。人口的减少意味着岛上维持基本服务越来越困难,包括学校、地区护士、商店和邮局、渡轮服务、飞机跑道、英国电信、苏格兰水务、垃圾收集、消防和急救人员。对于一个规模如此之大的社区来说,这个社区非常活跃,有许多正式和非正式的团体。社会活动和传统是岛屿文化的重要组成部分,定期在礼堂、学校、博物馆、两座教堂和天文台周围举行活动。通过岛上进行的社区协商,提供新能源系统被确定为社区发展计划的主要优先事项。费尔岛未接入国家电网,因此必须自行发电。1983 年,社区安装了英国第一台商用风力涡轮机,并从那时起管理风力/柴油联合发电系统。费尔岛电力公司成立于 1999 年 5 月,注册号为 196676。这是一家私人担保有限公司。费尔岛的每位居民都被邀请成为会员,并允许他们从公司购买能源。每个家庭和商业地产都是会员。经过多年记录和分析当地气象条件(尤其是风况)后,管理费尔岛气象局站点的 Dave Wheeler 确定费尔岛可能是不列颠群岛风力最大的低空地区。在燃料成本不断上涨、运输燃料困难的时期,戴夫向社区展示了我们利用风力发电的好处。戴夫在 1980 年因弗内斯举行的“农村和岛屿能源”会议上发表了一篇论文,描述了当时费尔岛的发电系统以及我们希望如何转向利用风力发电
项目层面的融资(包括融资的时间和金额)、购电协议的结构、业务战略和其他非历史事实的陈述。前瞻性信息通常可以通过使用诸如“大约”、“可能”、“将”、“可以”、“相信”、“预期”、“打算”、“应该”、“会”、“计划”、“潜在”、“项目”、“预期”、“估计”、“安排”或“预测”等词语来识别,或其他类似术语,表明某些事件将会发生或不会发生。它代表了公司对截至本新闻稿发布之日的未来事件或结果的预测和期望。前瞻性信息包括证券法所定义的面向未来的财务信息或财务前景,包括有关公司的目标产量、预计的目标收入和生产税收抵免、目标收入和生产税收抵免比例、项目规模、成本和进度的信息,包括获得许可证、开工、开展工作和开始商业运营,以使加拿大项目获得 ITC 资格,以及其他非历史事实的陈述。此类信息旨在让读者了解预期结果的潜在财务影响、预期的开发项目调试、已完成和未来收购的潜在财务影响以及公司支付股息和资助其增长的能力。此类信息可能不适用于其他目的。前瞻性信息基于公司做出的某些关键假设,包括但不限于有关水文、风况和太阳辐射的假设;运营设施、收购和委托项目的表现;资本资源的可用性和第三方及时履行合同义务;有利的经济和金融市场条件;平均商业现货价格与外部价格曲线和内部预测一致;假设的美元兑加元和欧元兑加元汇率没有重大变化;利率没有重大波动;公司成功开发和建造新设施;没有不利的政治和监管干预;成功续签电力购买协议;有足够的人力资源提供服务和执行资本计划;没有发生自然灾害、流行病或其他灾难等正常业务范围以外的重大事件;信息技术基础设施继续维护,没有重大网络安全漏洞。有关可能导致实际结果或业绩与所表达的结果或业绩存在重大差异的风险和不确定因素的更多信息,前瞻性信息所暗示或呈现的或用于得出该信息的主要假设,请参阅截至 2024 年 9 月 30 日三个月的管理层讨论与分析中的“前瞻性信息”部分。
本文介绍了创新型遥控 ETF 飞艇 1 的技术演示器的地面测试。测试活动旨在验证 ETF 的飞行控制系统,该系统基于推力矢量技术,与飞艇结构一起代表了 ETF 设计的一项重大创新。都灵理工学院航空航天系的一个研究小组与意大利一家小型私营公司 Nautilus 合作,几年来一直致力于 ETF (Elettra Twin Flyers) 的研究。这艘飞艇是遥控飞艇,具有高机动能力和良好的操作特性,即使在恶劣的大气条件下 2 。Nautilus 新概念飞艇具有结构和适当的指挥系统,使飞行器能够在正常和强风条件下进行向前、向后和侧向飞行以及以任何航向悬停。为了实现这些功能,ETF 演示器 3 采用了非常规的架构,该架构基于双船体,带有中央平面外壳结构、螺旋桨、机载电气系统和有效载荷(图 1)。作为主要指挥系统,气动控制面被六个螺旋桨取代,这些螺旋桨由电动机驱动,可在整个飞行范围内控制和操纵飞艇。本文分析了初步测试运行的结果,并将功率需求与专为 ETF 演示器 4 开发的燃料电池系统的性能进行了比较。I 简介 低成本多用途多任务平台 Elettra-Twin-Flyers (ETF) 正在由 Nautilus S.p.A 和都灵理工大学 [1] 合作开发。这是一种非常创新的遥控飞艇,配备了高精度传感器和电信设备。由于其独特的特点,它特别适合内陆、边境和海上监视任务以及电信覆盖范围扩展,特别是在那些无法进入或没有传统机场设施且环境影响是主要关注点的地区。ETF 的特点是机动性强,风敏感度低 [2]。飞行条件包括前向、后向、侧向飞行和悬停,无论是在正常风况下还是在强风条件下。为了实现这些能力,ETF 采用了高度非传统的架构。设计的关键点是创新的指挥系统,它完全基于由电动机驱动的推力矢量螺旋桨,由氢燃料电池供电。ETF 概念来自监视和监控目的。该飞艇设计具有很强的机动性,可以满足高水平的任务要求,可以操作高度专业化的仪器,例如轻型合成孔径雷达 (SAR) 系统或电光 (EO) 红外摄像机或高光谱传感器。为了满足平均监视要求,该系统的最低续航时间为 48 小时,可延长至 72 小时,高度操作范围为 500 至 1500 米。
由世界各地的政府。作为可再生能源和电动汽车(EV)被整合到分销网格中,这是一个复杂,活跃和动态变化的分销系统的新时代(Hodge等,2020; Huang等,2019; Irena,2015; Irena,2015; Kroposki et al。,2017; Lund等,2019)。主动分布网格在本文的背景下,意味着有些发电机在分布网格中产生幂。因此,它是一个主动系统,与被动分配网络相反,该网络仅用于将能量从供应变电站运送到最终客户。在本文的背景下,动态更改分布网格意味着其条件正在实时变化。这可能是由电动汽车,可再生能源的挥发性造成的,等等。因此,分布网格可以活跃(例如,有传统的发电机连接到分布级别),而不是动态的(没有动态资源 - 间歇来源,EV等)。主动和动态变化的分布网格是最复杂的情况,当有所有类型的DER连接到分布级别时,会导致实时动态变化的环境。这种新兴的分销电路类是本文的主要主题。DIV主要是基于支持太阳能和风能,电能量存储系统,EV充电器以及微电磁,虚拟发电厂(VPPS)和需求响应程序(DR)的总体DER的新型技术,DER在可再生能源的可再生能源中起着至关重要的作用。此外,因此,正如许多研究报告明确指出的那样,可以预期,DER的扩散将在全球范围内继续显着增加(Guidehouse,2019,2020,2021)。自然地,将这些新技术融入传统的被动分配网络之后是大量挑战(Aguero等,2016; Aguero&Khodaei,2018; Bravo et al。,2015; Martins&Borges,2011; Martins&Borges,2011; Mokryani et al。,2017; Mokryani; Mokryani et e e an e an 2018; Al。 ; Strezoski等人,2020年)。通过越来越多的DER的整合来挑战,范围包括计划和选择新的DER的最佳位置(Martins&Borges,2011; Mokryani等,2017; Mokryani等,2018),Mokryani等,2018),实时的技术侵犯,例如过度负载和逆转功率流动问题,由多样化的多种性质造成了rene rene rene/rene sers''的相邻性质, (Aguero et al。,2016; Aguero&Khodaei,2018; Bravo等,2015),以对由DERS动态变化的断层电流(Reno等,2021; Singh等人,2016; Stretezoski等,2020年)引起的保护系统发生故障和错误协调。这些挑战导致分销网络运营商(DNO)使用的传统程序和技术不足以对新兴分销系统的有效管理。此外,无法通过使用传统程序挑战来计划和执行托管新的DER和EV集成所需的网格扩展(Martins&Borges,2011; Mokryani等,2017; Mokryani等,2018)。因此,为了提供一个可靠的过渡到一个活跃和动态变化的分配系统,分配控制中心,其人员需要新工具,程序和培训,这将使他们能够正确地计划,控制和管理这种复杂的系统,这些系统完全是到达的(Aguero et al。To overcome these challenges and pave the way toward efficient energy transition, novel software solutions called Distributed Energy Resource Management Systems (DERMS) are emerging (EPRI, 2021a , 2021b ; Faria, 2019 ; IEEE, 2021 ; Ilic et al., 2020 ; Petrovic et al., 2019 ; Rahman et al., 2021 ; Strezoski et al., 2022 ; Strezoski&Stefani,Strezoski,Stefani等人,2019年,Vojnovic,et al。皮肤解决方案旨在提供分配系统运营商(DSO),网格计划人员和工程师,以及最终客户和制作者,这是一个机会,有机会进入活跃和动态分配系统的新时代,甚至从这种过渡中获得技术和货币收益。尽管如此,皮肤溶液仍在出现,其中大多数溶液目前还不成熟,这是为什么DSO通常不愿意直接将皮肤直接部署到其控制中心中的原因。更重要的是,即使是术语皮肤本身也是新颖的,因此它通常可以指出截然不同的软件解决方案,旨在针对不同的利益相关者,并通过使用DERS来满足完全不同的目标(Petrovic等,2019; Strezoski&Stefani,2021)。在频谱的一端,有分散的DER管理解决方案旨在提供基本但非常重要的特征,例如落后DER的聚合,以及DERS和Possumers在DR和能源效率(EE)计划中的参与。这些解决方案可以(并且大部分)DSO间接使用,但专为由独立的聚合商,市场运营商和其他第三方参与的直接利用而设计(Kerscher&Arboleya,2022; Mousavi&Meng&Meng,2021; Yi et et al。,2021)。在另一端,有完全集中的解决方案,目的是通过DSO进行直接利用,以帮助他们克服DERS对Distrimuti-Bution网格及其资产的挑战。令人困惑的部分是,由于“皮肤”一词的新颖性,其中大多数显然是DER管理的完全不同的软件解决方案,都被称为真皮。为了克服不同的管理解决方案之间的混乱,在本文中,他们将被系统区分,并且每个人都将以当前的最新审查状态来适当地称呼它们。