1,奥塔哥大学食品科学系Box 56,Dunedin 9054,新西兰; mirja.ahmmed@postgrad.otago.ac.nz或kaizer@cvasu.ac.bd(m.k.a. ); stephen.giteru@postgrad.otago.ac.nz(S.G.G. ); parise.adadi@postgrad.otago.ac.nz(p.a.) 2捕鱼和捕捞后技术系,渔业学院,吉大港兽医和动物科学大学,吉大港4225,孟加拉国3 3号生物工程中心和纳米医学中心,牙科科学院,卫生科学系,卫生科学系,奥塔戈大学,奥塔戈大学,P.O。 Box 56,Dunedin 9054,新西兰; shuva.bhowmik@postgrad.otago.ac.nz 4渔业与海洋科学系,Noakhali科学技术大学,NOAKHALI,NOAKHALI 3814,孟加拉国5 Alliance Group Group Limited,Invercargill 9840,新西兰6号,新西兰6号,Science of Science and Technology of Science and Technology of Science and Technology of Science and Technology,jashore 74408,anglad; mnhzilani09@gmail.com 7塔斯马尼亚大学海洋与南极研究研究所,澳大利亚朗塞斯顿7250; shikdersaiful.islam@gmail.com 8渔业和海洋资源技术学科,库尔纳大学生命科学学院,库尔纳9208,孟加拉国9化学工程学院,乌拉尔联邦大学,穆拉街28号,穆拉街28号,620002 Yekaterinburg,俄罗斯,俄罗斯; nabayire@gmail.com 10渔业和海洋生物科学系,贾沙尔科学技术大学,孟加拉国7408; Mr.haq@just.edu.bd 11化学系,奥塔哥大学,P.O。 ); hwong@cihe.edu.hk(J.H.W.)Box 56,Dunedin 9054,新西兰; mirja.ahmmed@postgrad.otago.ac.nz或kaizer@cvasu.ac.bd(m.k.a.); stephen.giteru@postgrad.otago.ac.nz(S.G.G.); parise.adadi@postgrad.otago.ac.nz(p.a.)2捕鱼和捕捞后技术系,渔业学院,吉大港兽医和动物科学大学,吉大港4225,孟加拉国3 3号生物工程中心和纳米医学中心,牙科科学院,卫生科学系,卫生科学系,奥塔戈大学,奥塔戈大学,P.O。Box 56,Dunedin 9054,新西兰; shuva.bhowmik@postgrad.otago.ac.nz 4渔业与海洋科学系,Noakhali科学技术大学,NOAKHALI,NOAKHALI 3814,孟加拉国5 Alliance Group Group Limited,Invercargill 9840,新西兰6号,新西兰6号,Science of Science and Technology of Science and Technology of Science and Technology of Science and Technology,jashore 74408,anglad; mnhzilani09@gmail.com 7塔斯马尼亚大学海洋与南极研究研究所,澳大利亚朗塞斯顿7250; shikdersaiful.islam@gmail.com 8渔业和海洋资源技术学科,库尔纳大学生命科学学院,库尔纳9208,孟加拉国9化学工程学院,乌拉尔联邦大学,穆拉街28号,穆拉街28号,620002 Yekaterinburg,俄罗斯,俄罗斯; nabayire@gmail.com 10渔业和海洋生物科学系,贾沙尔科学技术大学,孟加拉国7408; Mr.haq@just.edu.bd 11化学系,奥塔哥大学,P.O。 ); hwong@cihe.edu.hk(J.H.W.)Box 56,Dunedin 9054,新西兰; shuva.bhowmik@postgrad.otago.ac.nz 4渔业与海洋科学系,Noakhali科学技术大学,NOAKHALI,NOAKHALI 3814,孟加拉国5 Alliance Group Group Limited,Invercargill 9840,新西兰6号,新西兰6号,Science of Science and Technology of Science and Technology of Science and Technology of Science and Technology,jashore 74408,anglad; mnhzilani09@gmail.com 7塔斯马尼亚大学海洋与南极研究研究所,澳大利亚朗塞斯顿7250; shikdersaiful.islam@gmail.com 8渔业和海洋资源技术学科,库尔纳大学生命科学学院,库尔纳9208,孟加拉国9化学工程学院,乌拉尔联邦大学,穆拉街28号,穆拉街28号,620002 Yekaterinburg,俄罗斯,俄罗斯; nabayire@gmail.com 10渔业和海洋生物科学系,贾沙尔科学技术大学,孟加拉国7408; Mr.haq@just.edu.bd 11化学系,奥塔哥大学,P.O。); hwong@cihe.edu.hk(J.H.W.)Box 56,Dunedin 9054,新西兰; ahmfa773@student.otago.ac.nz 12 Medway Maritime Hospital,Medway NHS基金会信托基金会,肯特ME7 ME7 5NY,英国; charlene.cw.ng@gmail.com 13中国香港大学劳伦斯大学医学学院妇产科和妇科系; bomberharo@gmail.com 14渔业与海洋科学学院水产养殖科,库尔纳农业大学,库尔纳9100,孟加拉国; manikdof@yahoo.com 15科学,工程与健康研究部,专业与继续教育学院,香港理工大学,香港,中国; gabriel.chan@cpce-polyu.edu.hk 16尼尔森·曼德拉大学(Nelson Mandela University),伊丽莎白港6031,南非尼尔森·曼德拉大学生物化学和微生物学系; ryno.naude@mandela.ac.za 17中国香港大学中学大学生命科学学院; tzibunng@cuhk.edu.hk 18卫生科学学院,中国香港高等教育研究所Box 56,Dunedin 9054,新西兰; ahmfa773@student.otago.ac.nz 12 Medway Maritime Hospital,Medway NHS基金会信托基金会,肯特ME7 ME7 5NY,英国; charlene.cw.ng@gmail.com 13中国香港大学劳伦斯大学医学学院妇产科和妇科系; bomberharo@gmail.com 14渔业与海洋科学学院水产养殖科,库尔纳农业大学,库尔纳9100,孟加拉国; manikdof@yahoo.com 15科学,工程与健康研究部,专业与继续教育学院,香港理工大学,香港,中国; gabriel.chan@cpce-polyu.edu.hk 16尼尔森·曼德拉大学(Nelson Mandela University),伊丽莎白港6031,南非尼尔森·曼德拉大学生物化学和微生物学系; ryno.naude@mandela.ac.za 17中国香港大学中学大学生命科学学院; tzibunng@cuhk.edu.hk 18卫生科学学院,中国香港高等教育研究所
2019年4月的报告《糖技术》 3 介绍了可广泛应用于工业领域的物质——聚糖。本报告对与细胞表面聚糖结合的蛋白质——凝集素和从细胞释放的囊泡 4 ——外泌体进行了探讨,并提出了将凝集素和外泌体的特征相结合的药物递送系统 (DDS)——凝集素-外泌体-药物偶联物将在医疗和药物开发领域引起关注的观点。此外,本报告还介绍了利用凝集素众多功能的凝集素类药物,以及外泌体研究的未来发展。什么是聚糖?聚糖是由“糖”连接在一起而构成的生物材料,被称为继DNA(第一种生物聚合物)和蛋白质(第二种生物聚合物)之后的第三种生物聚合物。聚糖的组成成分是糖,与“碳水化合物”同义。大米等食物中所含的淀粉也是
聚糖在细胞信号传导和功能中起关键作用。与蛋白质不同,聚糖结构不是从基因模板中,而是许多基因的一致活性,使它们在历史上挑战研究。在这里,我们提出了一种利用合并的CRISPR屏幕和凝集素微阵列来揭示和表征细胞表面糖基化调节剂的策略。我们应用了这种方法来研究高甘露糖糖的调节 - 所有天冬酰胺(n)连接 - 聚糖的起始结构。我们使用CRISPR屏幕揭示了控制高甘露糖表面水平的基因的扩展网络,然后是凝集素微阵列,以完全测量精选调节剂对全球糖基化的复杂作用。通过此,我们阐明了两个新型的高甘露糖调节剂-TM9SF3和CCC复合物如何通过调节高尔基形态和功能来控制复合物N-糖基化。值得注意的是,这种方法使我们能够深入审问高尔基功能,并揭示与高尔基形态的类似破坏可以导致巨大不同的糖基化结果。总的来说,这项工作展示了一种可系统地剖析糖基化的调节网络的可推广方法。
Hanahan 和 Weinberg 提出了 10 条组织原则,这些原则使癌细胞能够生长和转移。这些独特而互补的能力被定义为“癌症标志”,包括肿瘤细胞及其微环境能够维持增殖信号、逃避生长抑制剂、抵抗细胞死亡、促进复制永生、诱导血管生成、支持侵袭和转移、重新编程能量代谢、诱导基因组不稳定性和炎症以及触发逃避免疫反应。这些共同特征通过不同的机制进行分级调节,包括涉及影响每个标志的生物学和临床影响的糖基化依赖性程序的机制。半乳糖凝集素是一种进化保守的聚糖结合蛋白家族,通过重新连接癌细胞或基质细胞(包括免疫细胞、内皮细胞和成纤维细胞)中的细胞内和细胞外回路,对肿瘤进展产生广泛影响。在这篇综述中,我们剖析了半乳糖凝集素在塑造控制肿瘤每个特征的细胞回路中的作用,说明了相关的例子并强调了治疗人类癌症的新机会。
已经开发了人类凝集素阵列,以探测具有致病性和共生微生物的先天免疫受体的侵蚀。Following the successful intro- duction of a lectin array containing all of the cow C-type carbohydrate-recognition domains (CRDs), a human array described here contains the C-type CRDs as well as CRDs from other classes of sugar-binding receptors, including galectins, siglecs, R-type CRDs, fi colins, intelectins, and chitinase-like lectins.阵列是用单位生物素标签修饰的CRD构建的,以确保CRD中的糖结合位点显示在定义方向的链霉亲和素涂层的表面上,并可以访问Mi-Crobes的表面。一种用于表达和显示来自聚糖结合受体所有不同结构类别的CRD的常见方法,可以在凝集素家族之间进行比较。除了先前记录的含量标记细菌结合的方案外,还开发了通过用DNA结合染料染色来检测与阵列结合的未标记细菌的方法。筛查也已被病毒糖蛋白以及细菌和真菌多糖未侵蚀。阵列为与受体相互作用的糖配体提供了一个公正的筛选,并且许多人表现出了较早研究所没有预期的结合。例如,某些甲状腺蛋白与缺乏乳糖或N-乙酰乳糖胺的细菌甘氨酸结合。结果证明了人类凝集素阵列的实用性,以提供与先天免疫系统中多种类似聚糖蛋白相互作用的独特概述,并提供了不同类型的微生物。
CFB,补体因子 B;CFD,补体因子 D;MAC,膜攻击复合物;MASP-3,甘露聚糖结合凝集素相关丝氨酸蛋白酶-3;PNH,阵发性睡眠性血红蛋白尿;RBC,红细胞。1. Risitano AM 等人。Front Immunol。2019;10:1157。2. Notaro R 等人。N Engl J Med。2022;387:160-6。3. Risitano AM 等人。Immunol Rev。2023;313:262-78。4. Loschi M 等人。Am J Hematol。2016;91:366-70。5. Fattizzo B 等人。J Blood Med。2022;13:327-35。 6. Belcher JD 等人。翻译研究。2022;249:1-12。
壳聚糖包被的香蕉 Musa acuminata 和车前草 M. balbisiana 中的凝集素蛋白的纯化和表征,作为检测癌症生物标志物的凝集素分子候选物
C型凝集素和收费受体:树突状细胞上的病原体受体。 为了识别微生物,未成熟的树突状细胞(DCS)表达类似收费的受体(TLRS)和C型凝集素,分别结合特定病原体成分和碳水化合物结构。 在TLRS识别后,诱导了信号转导级联反应,通过激活核因子-B(NF-B),这会导致共刺激分子和粘附分子的表达上调,并产生细胞因子,从而导致DC成熟。 通过C型凝集素对病原体的识别导致病原体内部化和细胞内加工,以通过MHC I类和II类分子呈现T细胞。 TCR,T细胞受体。C型凝集素和收费受体:树突状细胞上的病原体受体。为了识别微生物,未成熟的树突状细胞(DCS)表达类似收费的受体(TLRS)和C型凝集素,分别结合特定病原体成分和碳水化合物结构。在TLRS识别后,诱导了信号转导级联反应,通过激活核因子-B(NF-B),这会导致共刺激分子和粘附分子的表达上调,并产生细胞因子,从而导致DC成熟。通过C型凝集素对病原体的识别导致病原体内部化和细胞内加工,以通过MHC I类和II类分子呈现T细胞。TCR,T细胞受体。TCR,T细胞受体。
免疫反应。它分为三条主要途径:经典途径、旁路途径和凝集素途径。所有三条途径都汇聚在一个共同的终端途径上,导致膜攻击复合物 (MAC) 的形成和随后的病原体破坏。经典途径由抗原-抗体复合物激活,具体来说,由 IgG 或 IgM 与抗原结合激活。当 C1 复合物与 IgG 或 IgM 的 Fc 区结合时,该途径启动。旁路途径独立于抗体激活,该途径由 C3 的自发水解和 C3b 与病原体表面结合触发。凝集素途径由凝集素(如甘露糖结合凝集素 (MBL))与病原体表面的碳水化合物结构结合激活。补体系统通过几种机制增强免疫反应:
摘要:糖基化的改变会导致肿瘤发生过程中与肿瘤相关的碳水化合物抗原(TACA)的出现。o-糖果的截断揭示了经常连接到丝氨酸或苏氨酸氨基酸的N-乙酰基乳糖苷(GalNAC)的Thomsen Nouveau(TN)抗原,这是可以在癌细胞表面上访问的,但在健康细胞的表面上是可访问的。有趣的是,GalNAC可以通过巨噬细胞半乳糖凝集素(MGL)识别,这是一种在免疫细胞中表达的C型凝集素受体。在这项研究中,在体外测试了重组MGL片段,以测试流量细胞仪和共聚焦显微镜以及对肿瘤小鼠的流效量MGL后的癌细胞靶向效率。我们的结果证明了MGL靶向TN-阳性人类肿瘤而不诱导毒性的能力。这种结果使MGL是正常人蛋白的片段,是人类肿瘤的体内诊断和成像以及治疗应用的第一个载体候选。关键词:癌症,TN抗原,C型凝集素■简介