1 mfa47@cam.ac.uk, 2 ib340@cam.ac.uk 摘要 利用数字孪生概念,即现有铁路基础设施的物理资产虚拟副本,有可能彻底改变该领域的资产管理。但是,只有存在能够经济高效地生成铁路资产数字孪生的方法,这种利用才有可能。此“孪生”过程的第一步是捕获资产的原始几何形状并将其转换为适合进一步丰富设计、施工、运营和维护数据的高级几何形状。本文研究了第一步孪生的最新进展,即生成现有铁路基础设施的几何精确模型,重点关注轨道资产。本文首先定义数字孪生,然后解释真实虚拟同步的好处以及充分利用数字孪生的挑战。随后的部分提供了纵向文献,表明当前的研究对不同的铁路几何形状、邻域结构、扫描几何形状和输入数据强度很敏感。这些因素使得为数字孪生设计的方法对于包含不同水平和垂直高度的任何轨道结构都无效。这种差异相当常见;因此,我们得出结论,自动生成轨道结构几何数字孪生的问题尚未解决。
1 mfa47@cam.ac.uk, 2 ib340@cam.ac.uk 摘要 利用数字孪生概念,即现有铁路基础设施的物理资产虚拟副本,有可能彻底改变该领域的资产管理。但是,只有存在能够经济高效地生成铁路资产数字孪生的方法,这种利用才有可能。此“孪生”过程的第一步是捕获资产的原始几何形状并将其转换为适合进一步丰富设计、施工、运营和维护数据的高级几何形状。本文研究了第一步孪生的最新进展,即生成现有铁路基础设施的几何精确模型,重点关注轨道资产。本文首先定义数字孪生,然后解释真实虚拟同步的好处以及充分利用数字孪生的挑战。随后的部分提供了纵向文献,表明当前的研究对不同的铁路几何形状、邻域结构、扫描几何形状和输入数据强度很敏感。这些因素使得为数字孪生设计的方法对于包含不同水平和垂直高度的任何轨道结构都无效。这种差异相当常见;因此,我们得出结论,自动生成轨道结构几何数字孪生的问题尚未解决。
在数据预处理后,软件包的核心部分是将角度数据转换为倒数空间。这是在下面使用xRayutilities.permiment -module`详细描述的。实验模块中提供的类提供了帮助执行X射线衍射实验的例程。这包括计算衍射角(如下所述)的方法(如下所述),以对齐晶体样品并在角度和相互空间之间转换数据。对于各种GONIOMETER几何形状,从角到相互空间的转换非常通用。如本文所述,它与线性和区域检测器结合使用特别有用。在标准案例中,用户只需要初始化的例程,该例程预先定义了特定的Goniemeter几何形状,例如流行的四胎和六圈几何形状。
工程设计自动化可以表述为马尔可夫决策过程 (MDP)。工程师提供结构的初始几何形状,设置负载并允许改变几何形状的操作,指定优化目标(例如最小化重量、最大化刚度),然后开始训练模型。训练结束后,在推理阶段,工程师得到最终设计。生成式人工智能的最新发展可以增强这一过程。
为了提高散热器的性能,许多研究论文集中于散热器几何形状的设计和优化,这是改善传热的决定性因素。提高散热器(或热交换器)性能的基本方法是优化耦合的流体流动和热传递。考虑三个优化级别:尺寸优化、形状优化和拓扑优化(TO)。对于散热器尺寸优化,通道或翅片直径是需要调整或定义的变量。对于预定义的形状,尺寸优化是最简单的方法,因为它需要较少的设计变量。但是,它不允许获得具有更复杂形状的最佳几何形状。散热器形状优化涉及优化散热器通道或翅片的形状,可以是圆形、矩形、不规则形状等。该方法比尺寸优化方法更灵活,因为其解空间包含了尺寸优化的解空间,尽管程序更复杂。散热器的拓扑优化 (TO) 没有所需的预定义几何形状。可以在设计域中创建各种空隙大小和形状,以生成不同的 TO 几何形状。解空间TO包括尺寸优化和形状优化的解空间。因此它是自由度最大的优化,但同时也是复杂度最大的优化。
在此模块中,解释了太阳 - 地球位置和大小的几何形状以及距离的几何形状。定义了一个太阳常数,通常以1353 w/m2的形式,尽管估计值有一些变化。此外,如果在大气中也没有衰减,则与正常射线的平面接收到的太阳常数,太阳辐射不同。由于地球轨道的椭圆度,该数量每天每天都有变化。太阳 - 地球大小,位置在图中示意显示太阳 - 地球关系的几何形状。3.1。由于地球围绕太阳的椭圆轨道,太阳和地球之间的距离差1.7%。平均地球距离为1.495 x 1011 m。太阳与地球的角度为32'。太阳的直径为1.39 x 109 m,地球的直径为1.27 x 107 m。
摘要在金属添加剂制造中,具有高纵横比(AR)特征的几何形状通常与由热应力和其他相关构建故障引起的缺陷有关。理想情况下,将在设计阶段检测和删除过高的AR功能,以避免制造过程中不必要的故障。但是,AR是规模和方向独立的,并且在所有尺度和方向上识别特征非常具有挑战性。此外,并非所有高AR特征都像薄壁和细小的针头一样容易识别。因此,在添加剂制造过程的有问题特征检测领域的进一步发展需要进一步发展。在这项工作中,提出了基于从三角形的网格几何形状提取的两个距离指标的无量纲比率(d 1/ d 2)。基于此方法,具有不同特征的几何形状(例如薄壁,螺旋和多面体),以产生与AR相似的指标。将预测结果与典型几何的已知理论AR值进行了比较。通过将此度量与网格分割结合在一起,进一步扩展了该方法以分析具有复杂特征的几何形状。所提出的方法提供了一种强大,一般且有前途的方法,可以自动检测高AR功能并在制造前解决相关的缺陷问题。
Sonolumeinence是一种众所周知的实验室现象,其中适当环境中的振荡气泡会定期在可见频率范围内发出光线。在这项工作中,我们在模拟引力的框架中研究了系统。我们根据模拟几何形状对振荡气泡进行建模,并提出与几何形状对电磁场的非最小耦合处方。几何形状作为一种类似的振荡时间依赖性的背景,在这种情况下,通过来自量子真空的参数共振,在较宽的频率范围内重复的光子通量。由于我们的数值限制,我们可以达到最高10 5 m -1的频率。但是,我们在数值上以多项式形式拟合光谱,包括观察到的频率范围约为10 7 m -1。我们当前的分析似乎表明,模拟背景中的参数共振可能在解释量子场理论框架中的这种现象方面起着基本作用。
摘要:精确的纳米结构几何形状使纳米传感器能够将光学生物分子传递到活细胞内环境,这对于精确的生物和临床治疗非常有吸引力。然而,由于缺乏设计指南来避免光学力和金属纳米传感器在传递过程中产生的光热之间的固有冲突,利用纳米传感器通过膜屏障进行光学传递仍然很困难。在这里,我们进行了一项数值研究,报告了通过设计纳米结构几何形状来显著增强纳米传感器的光学穿透性,以最小化光热产生以穿透膜屏障。我们表明,通过改变纳米传感器的几何形状,可以最大化穿透深度,同时可以最小化穿透过程中产生的热量。我们通过理论分析证明了角旋转纳米传感器对膜屏障产生的横向应力的影响。此外,我们表明,通过改变纳米传感器的几何形状,最大化纳米颗粒-膜界面处的局部应力场使光学穿透过程增强了四倍。由于其高效率和稳定性,我们预计纳米传感器到特定细胞内位置的精确光学穿透将有利于生物和治疗应用。