ioxiribonacleicac或简短的DNA是一种核酸,提供了所有生物体的活力功能所需的遗传指令,以及某些病毒的激活和生物学发展。人体中的几乎每个细胞都有相同的DNA。大多数DNA都可以在细胞核中找到,但是细胞中的mito将能量从食物转化为可以用细胞使用的形式的形式可以找到,可以在少量的DNA(mtDNA)中找到。DNA中的信息是由四个化学碱基组成的代码:腺嘌呤(a),鸟嘌呤(g),胞嘧啶(c)和时间(t)。sAN DNA由约30亿个基础组成,所有人群中超过99%的基础都是相同的。这些基础的顺序确定了生物体建设和维护的信息;就像字母中的战争一样,用一定的顺序创建单词和句子。DNA碱基相互匹配,包括A和T和G形成称为碱基对的单元。每个碱基还连接到糖分子和磷酸盐分子。碱,糖和磷酸盐的组合称为核苷酸。核苷酸被排列在两条长条中,形成一个称为双螺旋的螺旋形。双螺旋的结构类似于楼梯;楼梯,糖和磷酸盐分子的基本对形成了楼梯的垂直侧(参见图1)。
s-层蛋白(SLP)是自组装,结晶蛋白涂有许多原核生物的细胞表面。这项研究介绍了乳杆菌SLP的实验原子分辨率结构,从而将功能性见解引入关键益生菌乳酸杆菌菌株中。SLPA和SLPX蛋白的结构突出显示了对SLPX整合至关重要的域交换,尤其是在响应环境应力时。两个结合区域被确定为将S-层附着至(Lipo)Teichoic酸至关重要。组装S-层的结构为(设计)SLP作为治疗炎症性疾病的治疗剂提供了基础。此外,它为在疫苗开发中使用SLP和具有量身定制特性的纳米结构(包括用于靶向药物递送的特性的纳米结构)开辟了广泛的途径。
传感器。通常,气体传感器有一些基本标准和性能参数:(a)高灵敏度; (b)高选择性; (c)性能的稳定性; (d)快速响应; (e)工作温度低和(f)低功耗。召开半导体气体传感技术被广泛研究和使用。6 - 8但是,由金属氧化物组成的这种气体传感器需要高温才能运行,其中一些在高于150°C的温度下工作,以增强气体使用感应材料的化学反应性。因此,能源消耗增加,因此在日常环境条件下降低了其适用性。室温(RT)传感器的操作不需要热量,因为它们不需要热量。最近,随着低维半导体的进展,2D材料吸引了很多考虑。通过使用2D材料,可以开发出更灵敏度的低功率和高密度气体传感器。2D材料的较大表面 - 体积比使其具有高度的效率和更大的恢复效率。9,10它们具有良好的连接和半导体特征。表面修饰也可以在这些材料上由于弱范德华力而进行,这使得与0D和1D材料相比,这使得2D材料更合适。2D材料可以归类为:(a)石墨烯家族; 11(b)2D金属氧化物; 12
a Laboratory of Physiologically Active Organic Compounds, Institute of Chemistry of Additives, Baku 1029, Azerbaijan b Department of Biotechnology, Faculty of Science, Bartin University, Bartin 74100 , Türkiye c Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Türkiye d Department of Gaziantep大学卫生科学研究所,Gaziantep,TürkiyeE系化学工程系,Baku工程大学,Hasan Aliyev Str。120,Baku,Absheron AZ 0101,Azerbaijan F化学系,Sumgait State University,Baku Str。 1,Sumgait AZ5008,阿塞拜疆G系,科学学院,国王沙特大学,利雅得,沙特阿拉伯11362,沙特阿拉伯H化学系,阿塔图尔克大学科学系,Erzurum 25240,Türkiye120,Baku,Absheron AZ 0101,Azerbaijan F化学系,Sumgait State University,Baku Str。1,Sumgait AZ5008,阿塞拜疆G系,科学学院,国王沙特大学,利雅得,沙特阿拉伯11362,沙特阿拉伯H化学系,阿塔图尔克大学科学系,Erzurum 25240,Türkiye
分子光谱是分子与电磁辐射相互作用时的电子,振动和旋转激发的分析。它被广泛用作识别和表征材料定量和定性分析的分子的工具。摩尔的光谱是入射电磁辐射的测量吸收或发射。每个分子都为特定的光谱法产生独特的光谱,从而使光谱被用作分子的ngerprint。红外(IR)光谱法是一种光谱技术,它阐明了改变其偶极矩的分子的振动模式。1这些振动模式导致摩尔数在红外线区域吸收电磁辐射,该区域位于波数4000 - 400 cm-1的范围内。官能团在1500 cm - 1以上的峰区域中具有独特的吸光度,称为功能组区域。2
这项研究着重于[2.2] Paracyclane-1,9-二烯的合成和评估,以使用环环分解聚合(ROMP)产生可溶性聚(P-苯基乙烯)(PPV)衍生物均聚物。所得的均聚物显示出狭窄的多分散指数(PDI)为1.22,表明对聚合的精确控制。PPV衍生物在各种有机溶剂中表现出极好的溶解度。的光物理特性,包括光吸收和荧光发射光谱,以评估光电设备中的实用性。薄膜的光条间隙范围为2.21至2.25 eV,对于解决方案,溶液的2.07至2.19 eV,而由环状伏安法确定的电化学带隙为2.37 eV。这些杂物在各种溶剂和薄膜中表现出有希望的荧光活性,这表明在有机灯发光二极管(OLEDS)和相关的光电设备中的潜在应用。
近年来,半导体技术的不断缩小,极大地受益于三维(3D)集成技术和三维晶体管的快速发展。1 – 7预计未来迫切需要在更复杂的3D器件和3D动态随机存取存储器(3D DRAM)方面取得进一步进展。在此过程中,需要开发和采用许多创新的测量技术来表征3D器件和3D单元,以深入了解新器件和新材料的结构-功能关系,从而辅助设计性能更佳的先进3D器件。随着3D器件变得越来越复杂,涉及更多的埋置固/固界面,而这些埋置界面上的分子相互作用对整个器件的性能起着关键作用,应进行原位研究。极紫外 (EUV) 光刻技术已用于 3D 技术,其通过次数不断增加,可用于 7 纳米和 5 纳米节点逻辑集成电路以及 16/14 纳米节点 DRAM 的批量生产。8 – 10 与 193 纳米浸没式光刻技术相比,
物质由一种或多种元素组成。在正常条件下,自然界中除了稀有气体外,没有其他元素以独立原子的形式存在。然而,一组原子被发现以具有特征性质的一种物质形式存在。这样的原子组被称为分子。显然,一定有某种力将这些组成原子保持在分子中。将不同化学物质中的各种成分(原子、离子等)保持在一起的吸引力称为化学键。由于化合物的形成是各种元素的原子以不同方式结合的结果,因此它引发了许多问题。为什么原子会结合?为什么只有某些组合是可能的?为什么有些原子会结合而其他某些原子不会结合?为什么分子具有确定的形状?为了回答这些问题,人们不时提出了不同的理论和概念。这些理论和概念包括 Kössel-Lewis 方法、价壳电子对排斥 (VSEPR) 理论、价键 (VB) 理论和分子轨道 (MO) 理论。各种价态理论的演变和对化学键性质的解释与对原子结构、元素电子排布和周期表的理解的发展密切相关。每个系统都趋向于更稳定,而键合是自然界降低系统能量以达到稳定的方式。
使用分光光度计和硅内计算研究制备了源自分散黑色9的两种亚胺化合物HS 1和HS 2。为了制备HS 1和HS 2的化合物,已根据已知方法获得了2,4-和2,5-二羟基苯甲醛化合物,这些化合物已获得含有propargyl基团的化合物。这些化合物已通过1 h(13 c)NMR,质谱,UV-VIS和FTIR的特性。已经在100-1000 mVs -1范围内研究了化合物的电化学性能。这些化合物表明在0.2 V处的不可逆阳极氧化还原过程。化合物的单晶从甲醇溶液中获得,其分子结构已通过X射线方法求解。通过热分析方法对化合物的热行为进行了影响。化合物HS 2的热稳定性高于化合物HS 1。使用Spec-Tropophotomemetric方法将两种化合物均筛选其DNA和BSA结合特性。具有可比结合常数的化合物与DNA的次要凹槽位点结合。最后,通过分子对接研究研究了化合物与DNA和BSA的结合相互作用和模式。