引用Reinke,Aaron W.,Robert A.Grant和Amy E. Keating。“合成的盘绕螺旋相互作用组为分子工程提供了杂种模块。”J.am。化学。Soc。,2010,132(17),pp 6025–6031。
摘要................................................................................................................................................................ 2
摘要:我们在液态氦气温度(T = 2 K)上进行激光光谱,以研究用氢化动力学滴注制造的纳米镜高度的蒽晶体中的掺杂的单二苯甲烷(DBT)分子。使用高分辨率的荧光激发光谱法,我们表明,印刷纳米晶体中单分子的零子线几乎与对散装中同一来宾 - 宿主系统观察到的傅立叶限制过渡一样狭窄。此外,光谱不稳定性可与或小于一个线宽度相当。通过记录DBT分子的超分辨率图像并改变激发梁的极化,我们确定印刷晶体的尺寸和晶体轴的方向。对于一系列应用,有机纳米和微晶的电水动力印刷是感兴趣的,其中希望对具有狭窄光学转变的量子发射器进行对照定位。关键字:纳米折线,纳米晶,量子发射极,单分子,单光子源,光谱M
抽象可解释的人工智能(XAI)在实现明智决定的过程中发挥了作用。现代各种供应链(SC)平台的出现改变了SC相互作用的性质,导致了显着的不确定性。这项研究旨在对现有的有关决策支持系统(DSS)的文献进行彻底分析,并在SC领域内对XAI功能的结合。我们的分析揭示了XAI对SC领域决策过程的影响。本研究利用Shapley添加说明(SHAP)技术使用Python机器学习(ML)过程分析在线数据。解释性算法是专门为通过为其产生的预测提供理由来提高ML模型的清醒性的。本研究旨在建立可衡量的标准,以识别XAI和DSS的组成部分,从而在SC的背景下增强决策。这项研究评估了对他们做出预测的能力,在线数据集的利用,所检查的变量数量,学习能力的发展以及在决策背景下进行验证的研究,强调了需要在不确定条件下涉及智能决策的其他探索领域的研究领域。
低温电子显微镜(cryo-EM)已成为确定大型蛋白质复合物和分子组装体结构的主要实验技术,2017 年的诺贝尔奖就是明证。尽管低温电子显微镜已得到极大改进,可以生成包含大分子详细结构信息的高分辨率三维(3D)图谱,但利用这些数据自动构建结构模型的计算方法却远远落后。传统的低温电子显微镜模型构建方法是基于模板的同源性建模。当数据库中找不到模板模型时,手动从头建模非常耗时。近年来,使用机器学习(ML)和深度学习(DL)的从头低温电子显微镜建模已成为大分子结构建模中表现最好的方法之一。基于深度学习的从头低温电子显微镜建模是人工智能的重要应用,其成果令人印象深刻,对下一代分子生物医学具有巨大潜力。因此,我们系统地回顾了具有代表性的基于 ML/DL 的从头低温电子显微镜建模方法。并从实践和方法论的角度讨论了它们的意义。我们还简要介绍了低温电子显微镜数据处理工作流程的背景。总体而言,本综述为从头分子结构建模的人工智能 (AI) 现代研究以及这一新兴领域的未来方向提供了入门指南。
P.Viridis Parana-Brazil PP702447.1 608-P.Viridis Kochin-India JN179068.1 650(Gilg等,2013) (Gilg等,2013) DQ917612.1 617(Wood等,2007)P.Viridis India Southern DQ917586.1 617(Wood等,2007)P.Viridis Philippines DQ917599.1 617(Wood等,2007,2007年) Luanda-Gangola KC692001.1 614(Cunha等,2014)P。Perna Punta d'Ovo-Mozambique KC692009.1 614(Cunha等,2014)P。Perna swakopmund-nemibia-nemibia kc692005.1 614(CC692005.1 614(Cunha et al。 (Cunha等,2014)P。Perna Gans Bay-South Africa KC691990.1 614(Cunha等,2014)P。Bizerte-Tunisia KC691986.1 614(Cunha等,2014,2014)P。非洲DQ917618.1 617(Wood et al wood et aul et p。 P. Perna Santa Catarina-Brazil DQ917594.1 617(Wood等,2007)P。Perna Sao Paulo-Brazil DQ917592.1 617(Wood等,2007)P。Canalicus houhora houhora houhora new new n-new n-new new Zealand dq917607.1 617(Wood1 7 Z17) Al。,2007)P。Canaliculus gore-new新西兰DQ917608.1 617(Wood等,2007)P。Canalia New Zealand DQ917609.1 617(Wood等,2007) Zealand DQ917614.1 620(Wood等,2007) div>
o 能够设计和实施实验或理论程序来解决学术和工业研究中的问题或改进现有结果 o 能够使用分析和数值数学计算工具 o 学生能够将物理理论应用于分子系统/晶体/生物分子/材料,了解使用计算机模拟分子系统动态的现代方法 软技能 ● 做出明智的判断和选择 o 能够以越来越高的自主性水平工作,包括承担项目规划和管理设施的责任 o 鼓励学生为提出的问题选择个人解决方案,并提出有趣的研究案例,这些案例可以作为考试面试的重要部分。 ● 交流知识和理解 o 能够使用意大利语和英语在物理学的高级领域进行交流 o 懂得如何揭示案例研究的特殊性并提出解决技术,鼓励在课堂上进行讨论 ● 继续学习的能力 o 掌握持续学习和知识更新的基本知识工具 o 知道如何从正式文本中提取真实案例研究的操作信息,使用计算机代码、高级数学技术、人工智能 教学大纲 内容知识 分子建模:经典分子动力学。分子中电子的量子处理。
b'MSC植物学是一项为期两年的课程,有助于对生物学主题有更好,更深入的了解。该课程具有实用性和理论结构。在实验室中给学生提供课程,以更好地了解植物生活。该课程旨在涵盖诸如微生物学,植物学,植物解剖学,分子生物学等的选修和核心主题。追求硕士学位植物学的过程还可以帮助学生在诸如兽医,农艺学,细胞学,林业等学科方面进行专业化。
V.实践•良好的实验室实践,缓冲液和试剂的准备。•离心和分光光度计原理。•细菌培养的生长和生长曲线的制备,从细菌中分离基因组DNA。•从细菌中分离质粒DNA。•lambda噬菌体的生长和噬菌体DNA的分离。•植物DNA的隔离和限制(例如大米 /月光 /芒果 / Merigold)。•通过(a)琼脂糖凝胶电泳和(b)分光光度法•使用分离的DNA定量DNA。•pagegel电泳。•质粒和噬菌体DNA,结扎,重组DNA构建的限制消化。•大肠杆菌的转化和转化体的选择•色谱技术a。 TLC b。凝胶过滤色谱法,c。离子交换色谱法,d。亲和色谱•点印迹分析,南部杂交,北部杂交。•Western印迹和Elisa。•辐射安全性和非拉迪奥同位素程序。