现代软件依赖于操作的秘密 - API键,代币和凭证对于与Stripe,Twilio和AWS等服务互动的应用程序至关重要。这些秘密中的大多数存储在平台本地的秘密经理中,例如AWS Secrets Manager,Vercel环境变量和Heroku Config vars。这些系统通过集中秘密并无缝将其注入运行时环境来提供便利。但是,此集中化引入了重大风险。如果被违反,它们会暴露在其中存储的所有秘密,从而导致爆炸半径,可能会泄漏数千甚至数百万个秘密。同时,诸如.ENV文件之类的替代方案最小化爆炸半径,但缺乏防止未经授权访问所需的保障措施。开发人员在具有较大风险或复杂性较大的爆炸半径的较高风险或复杂性之间进行选择。需要的是基于混合密码学而不是信任的秘密系统,允许开发人员在而无需任何第三方保持安全的情况下对秘密进行加密。在本文中,我们使用库在运行时解密加密秘密文件的库为这些风险提出了解决方案,并用平台的Secrets Manager中分别存储了一个私钥。此方法包含漏洞的爆炸半径,同时保持.ENV文件的简单性。即使一个组件(无论是加密的文件或秘密经理)还是受到妥协的,秘密仍然安全。只有同时访问两者都可以暴露它们。
苏格兰大学苏黎世大学和苏黎世大学,瑞士神经信息学研究所B卫生技术部,丹麦·托克尼斯克大学DTU,丹麦C丹麦林格比,丹麦C丹麦C型磁力共鸣研究中心,哥本哈根大学医院HVIDOVRE,HIVIDOVRE,DENMARK DENMARK DENMARK DENMARK DENMARS DENMARK DENMARK DENMARK DENMARK DENMARK DENMARK DENMARKERIERIRE; 8248,法国巴黎,德国认知,典范,纽约州纽约州哥伦比亚大学哥伦比亚大学哥伦比亚大学电气工程系PSL研究大学,美国哥伦比亚大学,美国哥伦比亚大学哥伦比亚省哥伦比亚省哥伦比亚省哥伦比亚省大脑行为研究所,纽约州哥伦比亚大学,美国纽约州哥伦比亚大学,美国纽约市,美国纽约市,纽约州,美国纽约市,纽约州,纽约州,美国纽约市,纽约州,纽约州。纽约州纽约州曼海斯特市Feinstein医学研究所
物质的光电离是本质上最快的电子过程之一。通过ATTSOND计量学成为可能的光离子化动力学测量。然而,迄今为止报告的所有实验都包含一个不可避免的测量诱导的贡献,称为Continuum-Continuum(CC)或库仑激光耦合延迟。在传统的Attosond计量学中,这种贡献对于大多数系统而言是无addive的。在这里,我们介绍了镜像对称性 - 破碎的attsond干扰物的概念,该干涉能够直接和独立地测量天然的单光子电离延迟和CC延迟。我们的技术解决了实验隔离这两种贡献的长期挑战。此进步为下一代准确的测量和精确测试打开了大门,该测试将设定标准,以基准测试电子结构和电子动力学方法的准确性。
成功的申请人将为3S电池项目工作:“电池应用程序的超级选择性分离器”。该项目由挪威研究委员会通过技术融合呼叫资助。Sintef行业(挪威)和乌普萨拉大学(瑞典)是项目合作伙伴。3S电池项目的目的是开发和设计量身定制的分离器,可在Li-S电池中进行高电化学性能和长期的环状寿命。成功的申请人将参与具有纳米级体系结构和功能的分离器的设计,制造和表征,以应对LI-S电池中的挑战。任务可能需要膜和薄膜制造,表征,纳米复合设计以及电池组件和测试的经验。
抽象蔬菜是植物的可食用部分。蔬菜微生物变质的发生被认为是对人和动物的潜在健康危害的根源。该研究的重点是隔离微生物,尤其是细菌和真菌与销售蔬菜。样品,并使用标准的微生物学分析来分离细菌和真菌。分离出的八个细菌分离株是Brevibacillus brevi,枯草芽孢杆菌,branmehamlla cattarhalis,Escherichia coli,Salmonella Typhi,Pseudomonas atruginosa,Serrratia Marcscen和Chaphyloccus sp。也分离出四个真菌分离株;曲霉曲霉,尼日尔曲霉,青霉人SP,糖疗法sp。胡椒(Capsicum Annuum)的细菌计数最高(6.53×10 9 CFU/mL),而Shoko(Argentia celosia Argentia)的真菌计数最高(5.45×10 9 CFU/mL)。在这项研究中,这些蔬菜的真菌和细菌污染的高流行率在耕种,收获,运输或销售时描绘了对这些食物材料的卫生处理。因此,需要通过适当清洗和消毒这些产品来保护最终消费者的健康,这些产品以其原始形式消费。键盘:细菌分离株,微生物负荷,蔬菜。简介蔬菜一词在15世纪初首次用英语记录。它来自旧法国,最初用于所有植物。在生物学环境中,这个词仍然在这种意义上使用。它源自中世纪的拉丁植物,意为“成长”,“繁荣”(沃顿,1970年)。蔬菜是植物的可食用成分。这通常意味着植物的叶子,茎,灯泡,种子和根。但是,蔬菜一词不是科学的,其含义主要基于烹饪和文化传统(ICMSF,1986; Bankefa,2013; Akinyele等al。,2013年)。蔬菜是食物的重要保护成分,对维持健康和预防疾病非常有益。它们含有不同比例的维生素,例如维生素A,K,B6,Provitamin,饮食
摘要 本研究旨在从塞内加尔刺桐叶和茎皮中分离植物成分,并评估其对与糖尿病相关的消化酶α-葡萄糖苷酶的抑制活性。对叶子的植物化学研究结果分离出三种皂苷(3-5)、两种三萜类化合物(7和8)和两种甾体(10a和10b)作为不可分离的混合物,而从茎皮中分离出一种皂苷(6)、一种三萜类化合物(9)和两种肉桂酸酯的混合物(2a和2b)。除化合物2b、7、8、10a和10b外,所有分离的化合物均为首次从刺桐属植物中报道。两种肉桂酸酯(2a 和 2b)的混合物乙酰化后,生成一种新的二酯衍生物(1),俗称刺桐花苷。与标准药物阿卡波糖相比,提取物和纯化合物(3、4、6)表现出良好的 a -葡萄糖苷酶抑制活性。研究结果表明,E. senegalensis 的皂苷可用于开发潜在的抗高血糖药物。
摘要。我们提出了戴维斯(Davis),这是一个基于i fifusion的udiovi sual separa the the trapion框架,该框架通过生成学习解决了视听声音源分离任务。现有方法通常将声音隔离作为基于面具的回归问题,从而取得了重大进展。但是,他们在捕获高质量分离声音与各种表情所需的复杂数据分布时面临局限性。相比之下,戴维斯利用生成扩散模型和分离U-net直接从高斯噪声中综合了分离的声音,并在音频混合物和视觉信息上进行条件。具有其生成性目标,戴维斯更适合实现各种声音猫的高质量分离的目标。我们将戴维斯与AVE和音乐数据集上现有的最新歧视性音频分离方法进行了比较,结果表明,戴维斯在分离质量方面胜过其他方法,这证明了我们可以解决视听源分离任务的框架的优势。我们的项目页面可在此处提供:https://wikichao.github.io/data/projects/davis/。
纠缠是量子技术的关键资源,是令人兴奋的多体现象的根源。然而,当现实世界的量子系统与其环境相互作用时,量化其两部分之间的纠缠是一项挑战,因为后者将跨边界的经典关联与量子关联混合在一起。在这里,我们使用混合态的算子空间纠缠谱有效地量化了这种现实开放系统中的量子关联。如果系统具有固定电荷,我们表明谱值的子集编码了不同跨边界电荷配置之间的相干性。这些值的总和,我们称之为“配置相干性”,可用作跨边界相干性的量化器。至关重要的是,我们证明了对于纯度非增映射,例如具有 Hermitian 跳跃算子的 Lindblad 型演化,配置相干性是一种纠缠度量。此外,可以使用状态密度矩阵的张量网络表示有效地计算它。我们展示了在存在失相的情况下在链上移动的无自旋粒子的配置相干性。我们的方法可以量化广泛系统中的相干性和纠缠,并激发有效的纠缠检测。
https://doi.org/10.15159/ar.21.131关于在建筑材料中使用天然纤维的文献计量分析G.M.G.Ferreira 1,D。Cecchin 1,*,A.R.G.de azevedo 2,i.c.r.p.Valadão1,K.A。Costa 3,T.R。Silva 4,F。Ferreira 5,P.I.S。Amaral 6,C.M。huther 1,F.A。Sousa 7,J.O。Castro 8,P.F.P。Ferraz 8和M.A.Teixeira 1 1联邦Fluminense University(UFF),农业工程与环境系,Street Passo daPátria,n。 156,BOA VIAGEM,NITERói-RJ,巴西2北Fluminense州立大学(UENF),土木工程系,Goytacazes Campos,RJ,巴西,3联邦Fluminense University(UFF),生产工程系,工人大道,n。 420,Vila Santa Cecilia,Volta Redonda-RJ,巴西4 North Fluminense State University(UENF),高级材料实验室(LAMAV),AV。alberto lamego,2000,28013-602 Campos dos goytacazes-rj,巴西·弗林宁斯大学(UFF),冶金工程系(VMT) 130-000 Alfenas-MG,巴西7 Semag/Aracruz,AV。Morobá,n。 20,BR 29192-733 BairroMorobá-es,巴西8联邦拉夫拉斯大学(UFLA),大学校园,邮政SCODE 3037 LAVRAS,MG,BRABASIL *通信:Daianececchin@id.uff.uff.uff.uff.br.br.br receaved:Feburoy 2 ND,2021年,2021年;接受:2021年8月3日;出版:2021年8月30日摘要。由于人口对可持续性主题的兴趣越来越大,因此与民用建筑领域的主题相关的出版物有所增长。农业废物已成为一个环境问题,由于自然纤维的特性和改善其产品机械性能的可能性,因此自然纤维在废物的再利用中找到了空间。为了达到可持续的建筑需求,以及重复使用废物的需求,研究开始分析天然纤维在建筑材料中的应用。通过搜索术语“天然纤维”和“建筑材料”术语限制在主要WOS集合中的“天然纤维”和“建筑材料”术语时,通过搜索“天然纤维”和“建筑材料”术语进行的研究提供了。 使用Vosviewer(VOS)软件中的BiblioMetrics分析了与出版物,文件的原产国,文件的原产国,作者使用的关键字以及每个文档的引用数量。 分析的结果表明,多年来与该主题相关的文件的增加,该地区研究最多的国家分别是中国(16),美国(14)和巴西(11)。 对关键词进行分析后提出的结果表明,自然纤维(61个出现),机械性能(44个出现)和复合材料(31例出现)是分析的中出现最高的单词。。使用Vosviewer(VOS)软件中的BiblioMetrics分析了与出版物,文件的原产国,文件的原产国,作者使用的关键字以及每个文档的引用数量。分析的结果表明,多年来与该主题相关的文件的增加,该地区研究最多的国家分别是中国(16),美国(14)和巴西(11)。对关键词进行分析后提出的结果表明,自然纤维(61个出现),机械性能(44个出现)和复合材料(31例出现)是分析的
现代软件依赖于操作的秘密 - API键,代币和凭证对于与Stripe,Twilio和AWS等服务互动的应用程序至关重要。这些秘密中的大多数存储在平台本地的秘密经理中,例如AWS Secrets Manager,Vercel环境变量和Heroku Config vars。这些系统通过集中秘密并无缝将其注入运行时环境来提供便利。但是,此集中化引入了重大风险。如果被违反,它们会暴露在其中存储的所有秘密,从而导致爆炸半径,可能会泄漏数千甚至数百万个秘密。同时,诸如.ENV文件之类的替代方案最小化爆炸半径,但缺乏防止未经授权访问所需的保障措施。开发人员在具有较大风险或复杂性较大的爆炸半径的较高风险或复杂性之间进行选择。需要的是基于混合密码学而不是信任的秘密系统,允许开发人员在而无需任何第三方保持安全的情况下对秘密进行加密。在本文中,我们使用库在运行时解密加密秘密文件的库为这些风险提出了解决方案,并用平台的Secrets Manager中分别存储了一个私钥。此方法包含漏洞的爆炸半径,同时保持.ENV文件的简单性。即使一个组件(无论是加密的文件或秘密经理)还是受到妥协的,秘密仍然安全。只有同时访问两者都可以暴露它们。