近年来,由于存储容量的增加、网络架构的改进以及数码相机(尤其是手机)的普及,视频在许多应用中变得越来越流行。如今,人们可以通过电视和互联网观看大量视频。观众可以选择的视频数量如此之多,以至于人类不可能从所有视频中找出感兴趣的视频。观众用来缩小选择范围的一种方法是寻找特定类别或类型的视频。由于需要分类的视频数量巨大,因此人们已经开始研究自动对视频进行分类、视频分类和分析。因此,有必要有一个系统来为某个视频或不同的视频生成相关标签
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
摘要:本研究探索了EEG信号中突出的信号,并提出了一种基于EEG信号识别情绪体验和心理状态的有效方法。首先,使用PCA将数据的维度从2K和1K降低到10和15,同时提高了性能。然后,针对构建基于EEG的识别方法的高质量训练数据不足的问题,提出了一种多生成器条件GAN,通过使用不同的生成器来生成覆盖实际数据更完整分布的高质量人工数据。最后,为了进行分类,引入了一种新的混合LSTM-SVM模型。所提出的混合网络在EEG情绪状态分类中获得了99.43%的整体准确率,在识别心理状态方面表现出色,准确率达到99.27%。所介绍的方法成功地结合了机器学习的两个突出目标:高精度和小特征尺寸,并展示了在未来分类任务中利用的巨大潜力。
Motu Profiler或Short Motus是一种软件工具,可以从分类学组成,代谢活性成员的丰富性以及菌株群体的多样性方面对微生物群落的生产。为此,它维护了单拷贝系统发育标记基因序列的数据库,该数据库被用作参考,简短读取的元基因组和元文字读数被映射为识别和定量微生物分类群。在这里,我们描述了两个基本协议中最常见的MOTU剖面用例。其他支持协议提供有关其安装和深入指南的信息,以调整其设置,以增加或降低检测和量化分类单元的严格度,以及用于自定义输出文件格式。提供了解释分析结果的指南,以及有关独特功能,方法学细节和工具的开发历史的其他信息。©2021作者。Wiley Perigonicals LLC发布的当前协议。
我们提出了一个新的机器学习基准,用于阅读任务分类,目的是在计算语言处理与认知神经科学之间的相交中推进脑电图和眼睛追踪研究。基准任务由一个跨主体分类组成,以区分两个阅读范式:正常阅读和特定于任务的读数。基准的数据基于苏黎世的认知语言处理语料库(ZUCO 2.0),该语料库提供了同时引人注目的视线和来自英语句子的自然阅读的EEG信号。培训数据集已公开可用,我们提出了新记录的隐藏测试集。我们为此任务提供多种可靠的基线方法,并讨论未来的改进。我们发布代码,并提供易于使用的界面,以使用随附的公共排行榜:www.zuco-benchmark.com评估新方法。
高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
摘要 — 目标:构建一个可以在单个受试者的小型 EEG 训练集上进行训练的 DL 模型提出了一个有趣的挑战,这项工作正试图解决这一挑战。具体来说,本研究试图避免长时间的 EEG 数据收集过程,并且不组合多个受试者的训练数据集,因为这会对分类性能产生不利影响,因为受试者之间的个体间差异很大。方法:使用大约 120 次 EEG 试验对定制的具有混合增强功能的卷积神经网络进行训练,每个模型仅针对一个受试者。结果:经过修改的具有混合增强功能的 ResNet18 和 DenseNet121 模型分别实现了 0.920(95% 置信区间:0.908,0.933)和 0.933(95% 置信区间:0.922,0.945)的分类准确率。结论:我们表明,尽管本研究使用的训练数据集有限,但与同一数据集上先前研究中的其他 DL 分类器相比,设计的分类器具有更高的分类性能。
有效的运动需要完整的运动和认知功能。越来越多的文献研究了运动认知干预措施,以提高健康或患病老年人的整体生活质量。对于此类干预,新的技术进步不仅在动机方面至关重要,而且对于改善多刺激世界中的用户体验也至关重要,这些世界通常以真实和虚拟环境的混合形式提供。本文为与运动相关的研究提供了一个分类系统,涉及在不同程度的虚拟环境中执行的运动认知干预。分类分为三类:(a)数字设备的类型及其提供的沉浸度;(b)人机交互的存在与否;(c)训练期间的活动参与,定义为活动>任务的1.5代谢当量。由于虚拟现实(VR)通常将不同的技术归类在同一术语下,我们提出了从计算机显示器和投影仪到头戴式VR技术的数字设备分类法。近年来发展迅速的所有沉浸式技术都归类在扩展现实(XR)这一总称下。这些包括增强现实 (AR)、混合现实 (MR) 和虚拟现实,以及所有尚未开发的技术。这项技术不仅在游戏和娱乐方面具有潜力,而且在研究、运动认知训练计划、康复、远程医疗等方面也具有潜力。本立场文件为基于数字设备、人机交互和身体参与的未来运动相关干预措施提供了定义、建议和指南,以便更一致地使用术语并有助于更清楚地理解其含义。
该项目旨在扩大偏远村庄的能源使用范围,从而改善受益社区在健康、教育和经济发展方面的发展成果。这将使可靠、清洁和负担得起的电力成为可能,从而改善农村社区的社会、经济和健康效益。向偏远社区提供电力将提高经济效益,通过消除电池和煤油等替代能源的费用来降低能源使用的相对成本,并将降低或消除依赖能源的企业的柴油发电机成本。该项目旨在支持该部增加农村社区电力使用的目标,探索各种替代可再生能源。预计该项目将为政府的可持续发展目标 (SDG) 做出贡献,解决多项发展举措。
