摘要:为了响应日益增长的时间信息处理的需求,神经形态计算系统正在越来越强调备忘录的开关动力学。虽然可以通过输入信号的属性来调节开关动力学,但通过备忘录的电解质特性控制它的能力对于进一步丰富了开关状态并提高数据处理能力至关重要。这项研究介绍了使用溶胶 - 凝胶过程的介孔二氧化硅(MSIO 2)膜的合成,从而可以创建具有可控孔隙率的膜。这些薄膜可以用作扩散的回忆录中的电解质层,并导致可调的神经形态切换动力学。MSIO 2回忆录表现出短期可塑性,这对于时间信号处理至关重要。随着孔隙率的增加,观察到工作电流,促进比和放松时间的明显变化。研究了这种系统控制的基本机制,并归因于二氧化硅层多孔结构内的氢键网络的调节,这在切换事件中显着影响阳极氧化和离子迁移过程。这项工作的结果提出了介孔二氧化硅,作为一个独特的平台,用于精确控制扩散的备忘录中神经形态开关动力学。关键字:介孔二氧化硅,扩散的回忆录,神经形态切换,短期记忆,离子动力学
在第48周的功效:在初步分析中,在第48周,HIV -1 RNA³200份/ml的比例为0.7%(1/149)和2.8%(4/141),分别为B/F/F/TAF和PI/R组,分别为:差异-2.1(95%CI:-2.1(95%ci:-6.7 to for/f/f/f/for), PI/R(表1)。140(94.0%)和129(91.5%),分别为48周HIV-1 RNA <200拷贝/mL。 每组中有8个经过审查 - 最新测试中的HIV-1 RNA <200副本/mL。 由于这两组的不良事件,都没有研究药物中断。 安全:由于这两组的不良事件,都没有研究药物中断。 这项研究是在海地期间进行的,在共同的19日和严重的内乱和与帮派有关的暴力行为。 当参与者不安全或不可能时,社区卫生工作者和邻里药物分配的随访。140(94.0%)和129(91.5%),分别为48周HIV-1 RNA <200拷贝/mL。每组中有8个经过审查 - 最新测试中的HIV-1 RNA <200副本/mL。由于这两组的不良事件,都没有研究药物中断。安全:由于这两组的不良事件,都没有研究药物中断。这项研究是在海地期间进行的,在共同的19日和严重的内乱和与帮派有关的暴力行为。随访。
RUH通过简单的转换转换为使用便携式气体罐减少了2%的碳排放,将我们的N2O使用从200万升至每年的13,500升减少到皇家联合医院的员工LED项目,BATH为整个医院造成了巨大的可持续性对整个氧化型的影响,这使该公司的巨大的可持续性为其造成了巨大的贡献。
摘要。用于加热和冷却的化石燃料消耗代表了世界总能源使用的大约一半,从而在减少对这些能源的依赖性方面面临着重大挑战。我们的研究介绍了零能切换辐射冷却器(ZESRC)的设计和制造,以通过减少建筑物内的能源消耗来解决全球气候危机。ZESRC使用了一种简单的形态驱动的方法,该方法利用了材料不同的热膨胀系数,从而在任何预设温度点在冷却和加热模式之间实现了无缝的切换,从而实现了出色的自适应热管理。现场实验表明,相对于环境温度,ZESRC的使用导致夏季最高温度降低7.1°C,冬季最大温度降低了7.5°C。此外,我们为不同的气候区域开发了一个能效图,显示了ZESRC优于太阳加热或辐射冷却的设备优势,将建筑物的能量使用降低了14.3%。结果强调了ZESRC净能量能量的能力,可显着推动全球能源保护和2050净零碳目标。
您的计划是否确保您至少有一个环境是您刚刚切换的生产版本的克隆?如果没有,您如何对早期缺陷进行根本原因分析并证明您可以打包和发布修复。理想情况下,您需要两个镜像生产的环境,以便您可以在一个环境中复制和修复,然后在发布到生产之前练习将代码/配置提升到 UAT。如果您真的在炫耀,您的环境计划还将提供匿名培训环境,并保留您的原始 UAT 环境以供后人参考,并在以后审核您的上线决定。不要忘记在新系统中记录任何补丁或更新的日期。
摘要 - 攻击者在现代车辆的电子控制单元(ECU)中发现了许多漏洞,使他们能够停止汽车,控制刹车并采取其他潜在的破坏性动作。这些攻击是可能的,因为车辆的车辆内网络(IVN)不安全,ECU可以在其中互相发送任何信息。例如,损害信息娱乐性ECU的攻击者可能能够向车轮发送制动消息。在这项工作中,我们介绍了一个基于分布式防火墙的计划,以根据集合“安全策略”来阻止这些未经授权的消息,以定义每个ECU应该能够发送和接收的传输。我们利用新开关的Zonal网络的拓扑来验证消息而无需加密,使用三元内容可寻址内存(TCAM)在电线速度上执行策略。至关重要的是,我们的方法最大程度地减少了Edge Ecus的安全负担,并将控制权放在一组硬化的区域网关中。通过Zonal IVN的Omnet ++模拟,我们证明了我们的方案的开销比基于现代密码学的方法低得多,并且可以实现实时,低延迟(<0.1 ms)流量。
摘要:已经研究了非易失性存储器电阻随机记忆(RERAM)的未来应用。reram由于其简单的结构,低压,快速切换速率,高密度堆积以及易于集成到CMOS处理中,引起了很大的兴趣。已被证明是过渡金属氧化物。由于其Fab-Frignstriments和10的介电常数为10,ZnO是几种最有前途的材料之一。AW(Electerode)/ZnO/ITO是在这项研究中使用多人模拟软件在这项研究中构建和模拟的。重新拉氏素的设计均具有对称和不对称的金属连接。研究了各种设备的当前伏特型热性能以及基础过程。也进行了AFM,SEM和RBS的分析。在ON状态期间,确实注意到,导热率较低的金属损失较小,从而产生高温。在W(Electrode)/ZnO/ITO设备中实现了通过压力接触测量的W(Electrode)/ZnO/ITO设备。也获得了1.3x10 5的电阻率,以出色的内存窗口性能证明了设备的弹性。因此,开发了系统并将其与模拟设备进行比较。
我们研究了铁磁异常的约瑟夫森连接的开关电流分布,该连接构成线性增加的偏置电流。我们的研究发现了开关电流分布的位置与关键系统参数之间的显着相关性,例如自旋 - 轨道耦合的强度和吉尔伯特阻尼参数。这表明可以通过实验测量直接确定这些参数。通过对噪声,磁化,相动态和开关电流分布的统计特性之间的相互作用进行全面分析,我们加深了对这些有趣的低温旋转型旋转设备的理解。这些发现有可能在量子计算体系结构和信息处理技术领域的应用中进行应用。
摘要:蛋黄 - 壳颗粒由封闭移动内部粒子的空心壳组成。由蛋黄 - 壳颗粒制成的胶体晶体是一种独特的结构,可以控制高度散射的内部颗粒的障碍,从而可以进行光学开关。在这项工作中,将蛋黄 - 壳颗粒合成并组装成有序结构。外部交流电(AC)电场用于控制内部粒子运动,如共聚焦显微镜和光学反射测量所观察到的那样。蛋黄 - 壳颗粒的胶体晶体由于组装的壳而显示出远距离的顺序,但由于内部颗粒的布朗运动而导致短距离降低。使用交流电场(25 v/mm),所有内部颗粒都在电泳上移动,导致内部颗粒的排列有序。这使Bragg反射强度的快速,可逆性切换。接下来,我们调查了当场外关闭时,短期订单如何减少影响切换性。使用高离子强度(10 mm)和较小的核心与壳大小比(〜0.3)实现了最大的光强度变化。我们的概念验证结果表明,通过进一步的优化,可以通过这种方式实现更强大的可切换光子晶体。关键字:蛋黄 - 壳颗粒,胶体晶体,交替电流电场,静电相互作用DEBYE- WALLER因子
Change log 4 Introduction 5 Intended audience 7 About this guide 7 Campus architectures 8 Wired local area network basics 10 Secured LAN 12 Network access control 14 Reference architectures 16 Security Fabric integration through FortiLink 16 MCLAG 16 Tiered architecture 17 Leaf-and-spine data center architecture 18 Network design principles 20 Dimensioning 20 Quality of service 21 Resiliency 22 Tier-1/core layer resiliency 22 Tier-2/aggregation layer resiliency 22 Tier-3/access layer弹性23未来验证24核心层26核心层平台27聚合层29聚合层平台30访问层31访问层部署建议建议31访问层平台35管理37最终设计39 SD-BRAND架构40 SD-BRANCH架构40小型SD-Branch 41中型SD-BRAND 41中型SD-Branch 42大型SD-Brank 43 Manager Brank 43 Management 43 Applences 43 Appendences 44 <