在这项研究中,使用了极端梯度提升(XGBoost)和光梯度提升(LightGBM)al-gorithms用间接太阳能干燥机的香蕉切片的干燥特性进行模型。建立了自变量(温度,水分,产品类型,水流量和产品质量)与因变量(能源消耗和降低)之间的关系。用于耗能,XGBoost在训练过程中以0.9957的r 2为0.9957,在测试过程中表现出优异的表现,在训练期间的最小MSE为0.0034,在训练期间为0.0008,在测试阶段表明高预测性获得率和低错误率。相反,LGBM显示较低的R 2值(0.9061训练,0.8809测试)和较高的MSE在训练过程中的MSE为0.0747,在测试过程中0.0337显示了0.0337,反映了较差的表现。同样,对于收缩预测,XGBOOST优于LGBM,较高的R 2(0.9887训练,0.9975测试)和较低的MSE(0.2527培训,0.4878测试)证明了LGBM。统计数据表明,XGBoost定期胜过LightGBM。基于游戏理论的Shapley功能表明,温度和产品类型是能源消耗模型的最具影响力的特征。这些发现说明了XGBoost和LightGBM模型在食品干燥操作中的实际适用性,以优化干燥调节,提高产品质量并降低能耗。
摘要 :腐败和病原微生物是影响食品安全和质量的最重要因素,而食品包装是食品在运输过程中抑制腐败和病原微生物最重要的技术环节。本研究旨在探讨不同商品包装条件下4 ℃贮藏火腿中生物胺(色胺、2-苯乙胺、腐胺、尸胺、组胺、酪胺、亚精胺、精胺)和致腐微生物的发展情况。实验包装系统分别为Pack-1(多层板+多层袋)、Pack-2(聚偶片+金属化袋)和Pack-3(聚偶片+铜袋)。结果表明,与另外两个包装系统相比,Pack-2的包装效率非常高。对主成分1(PC1)进行主成分分析(PCA)的结果是包装条件差异中最重要的变量,因为它解释了;包装1、包装2和包装3中PC1分别占总变异的71.7%、57.8%和83.5%。PC1与微生物分析和蛋白质含量变化(部分生物胺含量)呈正相关。PC1将指标与包装条件区分开来。PC1与微生物分析和蛋白质变化呈正相关。因此,尸胺、色胺和苯乙胺可作为火腿腐败的指标,其含量可能反映腐败程度。
目的 将 SVRTK 方法集成到 Gadgetron 框架中,可以在低场 0.55T MRI 扫描仪中在扫描持续期间自动进行 3D 胎儿大脑和身体重建。方法 通过将适用于低场 MRI 的自动可变形和刚性切片到体积 (D/SVR) 重建与基于实时扫描仪的 Gadgetron 工作流程相结合,实现基于深度学习、集成、稳健且可部署的工作流程,从几个运动损坏的单独 T2 加权单次 Turbo Spin Echo 堆栈中产生超分辨率 3D 重建的胎儿大脑和身体。在 12 个前瞻性获取的胎儿数据集中,从胎龄 22-40 周的范围对流程的图像质量和效率进行定性评估。结果 重建在获取最终堆栈后平均 6:42 ± 3:13 分钟内可用,并且可以在正在进行的胎儿 MRI 扫描期间在扫描仪控制台上进行评估和存档。输出图像数据质量被评为良好至可接受的水平。对 83 个 0.55T 数据集进行的管道额外回顾性测试表明,低场 MRI 的重建质量稳定。结论 所提出的管道允许基于扫描仪的低场胎儿 MRI 前瞻性运动校正。这项工作的主要新颖部分是将自动化胎儿和身体 D/SVR 方法汇编成一个组合管道,首次将 3D 重建方法应用于 0.55T T2 加权数据,以及在线集成到扫描仪环境中。
抽象的物镜经硫代蛋白淀粉样蛋白心肌病(ATTR-CM)是由沉积野生型或突变的转染素引起的浸润性心脏疾病。作为特性疾病,我们试图确定其特发性高度心房(AV)块的患者的患病率,需要永久性起搏器(PPM)。在2019年11月至2021年11月之间,经过PPM植入PPM的70-85岁的连续患者提供了3,3-二磷酸-1,2-二磷酸-1,2-丙二烷二键二羧酸(DPD)扫描。人口统计学,合并症,心电图和成像数据。结果39例患者(男性为79.5%,设备植入76.2(2.9)年)进行了DPD扫描。3/39(7.7%,全男性)的结果与属性(佩鲁吉尼2或3级)一致。平均DPD扫描的人的最大壁厚为19.0 mm(3.6毫米),而阴性扫描的患者为11.4 mm(2.7 mm)(p = 0.06)。所有被诊断为ATTR-CM的患者患有脊柱狭窄,两名患有腕管综合征。结论应在需要永久起搏的老年患者中考虑高度AV块,尤其是在存在左心室肥大,腕管综合征或脊柱狭窄的情况下。
摘要 - 已研究了用于支持多样化应用的Space-Air-fromend集成网络(SAGIN)切片,该应用由陆地(TL)组成,由基站(BS)部署(BS),由无人驾驶汽车(无人驾驶汽车(UAV)的空中层部署的空中层(AL)组成。每个Sagin组件的能力是有限的,在退出文献中尚未完全考虑高效和协同负载平衡。为了这种动机,我们最初提出了一种基于优先级的载荷平衡方案,用于Sagin切片,其中AL和SL合并为一层,即非TL(NTL)。首先,在相同的物理萨金下建造了三个典型的切片(即高通量,低延迟和宽覆盖片)。然后,引入了一种基于优先级的跨层负载平衡方法,用户将拥有访问陆地BS的优先级,并且不同的切片具有不同的优先级。更具体地说,超载的BS可以将低优先级切片的用户卸载到NTL。此外,通过制定多目标优化问题(MOOP),共同优化相应切片的吞吐量,延迟和覆盖范围。此外,由于TL和NTL的独立性和优先级关系,上述摩托车被分解为两个子摩托车。报告的仿真结果表明了我们提出的LB方案的优势,并表明我们所提出的算法优于基准测试器。最后,我们自定义了一个两层多代理的深层确定性策略梯度(MADDPG)算法,用于求解这两个子问题,该问题首先优化了TL的用户-BS关联和资源分配,然后确定UAVS的位置部署,USE-UAV/Leo satellite Satellite Association和NTL的资源分配。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权持有者此版本于 2024 年 1 月 9 日发布。;https://doi.org/10.1101/2024.01.06.24300926 doi:medRxiv 预印本
摘要 - 互联网,网络带宽和稳定性的快速发展变得越来越重要。随着用户数量的增加,如何使每个用户拥有高质量的服务(QoS)是一个紧迫的问题。5G切片允许灵活地管理每个用户的网络使用情况,这又可以优化整体网络使用情况并减少网络资源的消耗。5G切片可以灵活地管理每个用户的网络使用情况,以优化整体网络使用并减少网络资源消耗。在本文中,使用机器学习分析网络流量,并分析网络上的141个不同应用程序,并在不同的机器学习模型上进行实验。基于上述实验结果,提出了用于5G切片管理的算法。基于上述流量分析结果,我们将根据每个用户的当前网络流量动态配置和优化每个切片的资源。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权持有者此版本于 2024 年 1 月 8 日发布。;https://doi.org/10.1101/2024.01.06.24300926 doi:medRxiv 预印本
摘要 - 不像传统网络,软件定义的Net Works(SDN)提供了对网络中所有设备的总体视图和集中控制。SDNS使网络管理员能够使用通用API在SDN控制器的基础上通过程序应用程序来实现网络策略。可以通过维护整个网络的统一控制来部署一个或多个控制器实例来管理数据流。预计控制器将对转发设备的查询迅速响应。假定控制器的快速响应是在执行复杂的机制的同时是不合理的。在本文中,作者提出了一种称为隔离器的独特,自适应,轻巧但有效的技术,以减轻内部攻击的效果以及在启用SDN的云中分布式应用程序的故障。在检测虚拟机的任何可疑活动时,提出的安全应用程序通过将接口删除到其各自的共享网络并通过以高度选择性模式运行的受限制网络来隔离。通过将数据流量进行深度数据包检查,限制网络搜索与已知蠕虫模式的匹配。该应用程序是针对OpenDaylight Controller编程的,结果显示出具有最小的延迟和计算成本的恶意活动方面有了显着改善。