建立患者信任和加强医疗领域数据基础设施的工作示例包括由英国健康数据研究机构资助的 INSIGHT,该项目使用匿名眼部扫描数据,由 ODI 共同开发的多元化数据信托咨询委员会监督。ODI 还强调了隐私增强技术 (PET) 在确保安全、合乎道德的数据访问方面的作用。例如,在 PET 解释器中,联合学习(由牛津大学 CURIAL-Lab 团队展示)使 AI 模型能够跨多个数据源进行训练,从而无需共享数据即可筛查患者是否感染 COVID-19,从而增强隐私和协作。OpenSafely 支持在可信研究环境中链接患者健康记录。数据分析师可以使用此功能来揭示大量疾病、合并症和患者人口统计数据的模式。精心策划的数据基础设施是 AI 功能和部署必须依赖的基础。
Calvino K. J. Chem。pharm。res。,2024,16(7):7-8毒理学,以发现趋势并预测新型化学物质的毒性。与常规
本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
微分同胚可变形图像配准在许多医学图像研究中至关重要,因为它提供了独特的属性,包括拓扑保存和变换的可逆性。最近基于深度学习的可变形图像配准方法利用卷积神经网络(CNN)从合成基本事实或相似性度量中学习空间变换,从而实现快速图像配准。然而,这些方法往往忽略了变换的拓扑保存和变换的平滑性,而平滑性仅由全局平滑能量函数来强制执行。此外,基于深度学习的方法通常直接估计位移场,这不能保证逆变换的存在。在本文中,我们提出了一种新颖的、有效的无监督对称图像配准方法,该方法最大化微分同胚图空间内图像之间的相似性,并同时估计正向和逆变换。我们使用大规模脑图像数据集在 3D 图像配准上评估了我们的方法。我们的方法实现了最先进的配准精度和运行时间,同时保持了理想的微分同胚特性。
在气候变化、害虫和病原体蔓延、世界人口不断增长的粮食需求以及农药使用对环境造成巨大影响的背景下,Flors 等人 ( 1 ) 在《科学前沿》上发表的头条文章提出了一种替代的创新理念,即以环保高效的方式利用植物的内在恢复能力来应对这些挑战。这篇及时的文章强调了诱导抗性 (IR) 现象,这是植物对病原体和/或食草动物攻击的免疫反应的一部分。目前,研究人员的主要目标是减少甚至取代合成化学农药的使用,以可持续、生态和经济可行的方式保护生物多样性,并最大限度地减少对土壤和地下水的有害影响。Flors 等人 ( 1 ) 提出,内源性的植物防御机制通常比使用农药等更环保、更高效、更有针对性,从而为未来减少对农药的依赖提供了动力。我们支持作者的想法,并提供我们的观点和一些批判性考虑,希望这将有助于推动这一进程。
人工智能 (AI),尤其是其生成形式,正在彻底改变人类生活的各个方面,从通信到娱乐,教育也不例外。本指南提供了实用技巧,以最大限度地发挥生成式人工智能的优势并合乎道德地使用。OpenAI 于 2022 年 11 月启动的 ChatGPT 引发了关于人工智能对高等教育影响的重要讨论。当学生使用它来撰写论文时,它打破了现状。与谷歌的 BARD 和微软的 BING 一样,OpenAI 的 ChatGPT 是能够模仿人类对话的强大大型语言模型 (LLM) 的典型示例。大型语言模型在识别语言模式和预测上下文词方面表现出色,并且擅长以最少的用户输入生成连贯且相关的文本响应。通过利用其广泛的经过训练的语言模式数据库,大型语言模型可以提供生成的文本响应,准确反映用户输入的上下文。凭借对语言的掌握,他们可以创作创意诗歌,撰写全面连贯的文章,深入分析主题并有说服力地提出论点。
1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
解决方案 NetApp 和 Run:AI 合作简化了 AI 工作负载的编排,简化了深度学习 (DL) 的数据管道和机器调度流程。通过简化、加速和集成经过验证的 NetApp ONTAP AI 架构的数据管道,您可以充分实现 AI 和 DL 的前景。Run:AI 的 AI 工作负载编排增加了一个专有的基于 Kubernetes 的调度和资源利用率平台,以帮助研究人员管理和优化 GPU 利用率。这些产品共同支持在不同的计算节点上并行运行大量实验,并快速访问集中存储上的许多数据集。
微糖是在植物后7-14天左右收获的未成熟蔬菜蔬菜蔬菜,或者在开发新的子叶叶叶后,在许多研究中已经检查了由于生物活性化合物所包含的生物活性化合物而归类为功能性食品,这使许多研究受益于健康。生物活性化合物(Zhang等,2021)。在mircrogreens中含有的植物营养素水平,例如维生素,矿物质和植物化学物质,根据植物的生长阶段以及通常与植物的生长相差(通常是植物的生长)(通常是植物的生长阶段)(通常) ((Brazaitytė等,2015)。通常,在培养微绿色时,收获过程只能完成一次,但有些植物可以多次收获,以便它
• 人工智能(AI) • 自然语言处理和软计算技术 • 分布式账本技术 • 客户尽职调查的数字解决方案 • 应用程序编程接口(API)
