该项目旨在为建造一个满足现代世界的需求和要求的单一多层建筑提供全面和创新的解决方案。该项目着重于单列多层建筑的设计和构建。由于人口不断增长,土地稀缺趋于建筑技术和高层建筑的发展。目的是创建一个高效且功能性的建筑物,以最大程度地利用可用空间,同时确保结构稳定性和安全性。弯曲力矩,压力,剪切力,结构建模和该结构的位移设计考虑因素在本文中提供了使用Staad Pro进行分析的。该项目包括详细的结构分析和设计,以及考虑各种因素,例如土壤条件,风载,风载,地震载荷和其他环境因素。该建筑物将旨在满足当地的建筑法规和法规,同时纳入可持续和节能的功能。整个结构计划和设计过程中的过程不仅需要意识和智力思维,而且还需要对结构工程的足够知识,以及有关实践方面的知识,例如以示例经验备份的相关设计代码。此外,单列建筑项目的范围是创建一个有效,功能性和美观的建筑物,以满足其用户的需求,同时确保结构稳定性,安全性,并遵守相关法规和标准。
摘要 目的——本文旨在开发和测试用于半导体芯片封装的热界面材料 (TIM)。本研究的目标是实现良好的粘附性能(> 5MPa 剪切强度)和低热界面阻(优于 SAC 焊料)。设计/方法/方法——研究了芯片和基板镀金触点之间 TIM 接头的机械和热性能。本研究采用基于银浆的烧结技术。通过剪切力测试和热测量评估性能特性。使用扫描电子显微镜对形成的接头的横截面进行微观结构观察。结果——得出结论,含有几十微米大小的球形银颗粒和几微米大小的片状银颗粒的浆料具有最佳性能。烧结温度为 230°C,烧结过程中对芯片施加 1 MPa 的力,可实现更高的粘附性和最低的热界面阻。原创性/价值——提出了一种基于银膏的新材料,该材料含有悬浮在树脂中的不同大小(从纳米到几十微米)和形状(球形、薄片)的银颗粒混合物。使用烧结技术和银膏在 230°C 下施加压力制备的接头表现出比其他 TIM 材料(如导热油脂、导热凝胶或导热粘合剂)更好的机械和热性能。这些材料可以使电子设备在 200°C 以上的温度下运行,而目前硅基电力电子设备无法做到这一点。
摘要 随着时间的推移,癌症病例数量预计会大幅增加,研究人员目前正在探索“非传统”研究领域,以寻求新颖的治疗方法。一个逐渐引起人们兴趣的新兴领域是细胞机械机制。从广泛的角度来看癌症的物理特性,人们一直在争论是否可以将不同类型的癌症定义为更硬或更软。尽管有大量文章支持双方的观点,但证据表明癌症并没有特别的规律性。相反,癌症具有高度适应性,使其能够承受癌细胞遇到的不断变化的微环境,例如肿瘤压缩以及血管系统和身体中的剪切力。使癌细胞实现这种适应性的是构成机械网络的特定蛋白质,从而导致癌细胞的特定机械程序。巧合的是,这些蛋白质中的一些,如肌球蛋白 II、α-辅肌动蛋白、肌动蛋白和肌动蛋白,在癌症中的表达发生了改变和/或以某种方式直接参与癌症进展。因此,以机械系统为目标作为一种治疗策略可能会在未来带来更有效的治疗方法。然而,针对机械程序绝非易事。机械程序不仅参与癌症的发展和转移,还有助于驱动许多其他关键的细胞过程,如细胞分裂、细胞粘附、代谢和运动。因此,针对机械程序的抗癌治疗必须非常小心,以避免潜在的副作用。在这里,我们介绍了针对机械程序的潜力,同时也提供了它作为癌症治疗策略的挑战和缺点。
抽象目的 - 本文的目的是开发和测试热界面材料(TIM),以用于组装半导体芯片包装中。这项研究的目标是良好的粘附特性(> 5MPA剪切强度)和低热界面电阻(比SAC焊料更好)。设计/方法/方法 - 研究了芯片和底物的金色接触之间的TIM关节的机械和热性能。烧结技术。通过剪切力测试和热测量评估性能特性。扫描电子显微镜用于形成关节的横截面的显微结构观察。发现 - 得出结论,对于含有数十个微米大小的球形AG颗粒的糊状物的最佳特性是达到的,具有较少微米的粉状Ag颗粒。在230°C下的烧结温度,在烧结过程中施加1 MPa力在芯片上具有更高的粘附性和最低的热界面电阻。独创性/价值 - 基于含有不同大小的Ag颗粒(形成数十个微米)的Ag颗粒的混合物的新材料,并提出了悬浮在树脂中的形状(球形,含量)。在230°C下用施加压力在230°C下制备的关节比其他TIM材料(例如热油脂,热凝胶或热导电粘合剂)表现出更好的机械和热材料。这些材料可以在200°C以上的温度下实现电子设备操作,目前无法用于基于SI的电源电子设备。
简介:本研究研究了基于实际点的髋关节置换手术中使用机器人工具的使用。这项研究的目的是评估具有自动移植物上颌前进的一件式Lefort I截骨术的骨骼稳定性。近几十年来,在科学和技术进步的帮助下,手术已成为一种治疗方法,并且将电气机器人用作最先进的第三代微创手术,该手术具有非常高级的远程手术系统,正在研究多次。方法:除了指电子搜索和审查中发现的论文外,还彻底搜索了医疗资源的最相关和最重要的医疗资源数据库,例如Google Scholar和Cochrane Cenral。审查了他们的消息来源,并进行了手动搜索,并在必要时与专家进行了沟通。搜索,使用了合适的术语(网格,免费文本)。的发现:结果表明,由于股骨头假体和茎假体的圆锥体区域之间存在多个剪切力,由摩擦引起的腐蚀以及两者之间的界面磨损引起的腐蚀,这被认为是尖端的,从而导致金属离子和颗粒的产生。结论:从现有金属表面释放出非常细腻的释放,它放置在髋关节的聚乙烯衬里上,这本身会导致金属差,骨骨溶解和假体稳定性损失等后果。此外,髋关节置换后的肢体长度差,THA(总髋关节置换术)是一种常见的并发症,会影响患者对关节置换的满意度。
摘要 目的——本文旨在开发和测试用于半导体芯片封装的热界面材料 (TIM)。本研究的目标是实现良好的粘附性能(> 5 MPa 剪切强度)和低热界面阻(优于 SAC 焊料)。设计/方法/方法——研究了芯片和基板镀金触点之间 TIM 接头的机械和热性能。本研究采用基于银浆的烧结技术。通过剪切力测试和热测量评估性能特性。使用扫描电子显微镜对形成接头的横截面进行微观结构观察。结果——得出结论,含有几十微米大小的球形银颗粒和几微米大小的片状银颗粒的浆料可实现最佳性能。烧结温度为 230°C,烧结过程中对芯片施加 1 MPa 的力,可实现更高的粘附性和最低的热界面阻。原创性/价值——提出了一种基于银膏的新材料,该材料含有悬浮在树脂中的不同大小(从纳米到几十微米)和形状(球形、薄片)的银颗粒混合物。使用烧结技术和银膏在 230°C 下施加压力制备的接头表现出比其他 TIM 材料(如导热油脂、导热凝胶或导热粘合剂)更好的机械和热性能。这些材料可以使电子设备在 200°C 以上的温度下运行,而目前硅基电力电子设备无法做到这一点。
口腔以伤口和溃疡的形式表现出来(Nguyen&Hiorth,2015; Sankar等人,2011年40)。 微生物,唾液和组织剪切力的动态环境使局部治疗变得复杂。 由于粘合剂故障(<24 h),结构完整性的丧失或其组合43(Boateng等,2014; Davidovich-Pinhas&bianco-Peled,2014; Hearnden等,2012; Hearnden et al。,2012; Laffleur 44&Kküpepersan al an al al an al an al an al an al an al an al an al an an al an al an al an an al an al an al an al an al an al an al an al an al and a an and 201; 替代方案是液体45或凝胶的频繁应用(3-5/天),导致患者依从性差。 商业粘膜粘附设计基于水46肿胀聚合物,这些聚合物通过组织表面的聚合物纠缠粘在软组织上(Smart,47,2014年)。 设计相对安全,但是不受控制的吸水会导致48个粘附力随着时间的推移而恶化(0.5-5 kPa,假设面积为2 cm 2)(El Azim等,2015; Kumria等; Kumria et 49 al。 因此,水凝胶50结构在脱落前的固定量为6-8小时(Nafee等,2004; Perioli等,51 2004; Santocildes-Romero等,2017)。 如果肿胀52稳定,粘附性设计将得到改善,从而防止凝聚力和粘合性衰竭(Smart,2014)。 延长保留率将导致口腔病变处增加接触时间增加,扩展治疗剂量并提供屏障54(Colley等,2018; Santocildes-Romero等,2017)。 55口腔以伤口和溃疡的形式表现出来(Nguyen&Hiorth,2015; Sankar等人,2011年40)。微生物,唾液和组织剪切力的动态环境使局部治疗变得复杂。由于粘合剂故障(<24 h),结构完整性的丧失或其组合43(Boateng等,2014; Davidovich-Pinhas&bianco-Peled,2014; Hearnden等,2012; Hearnden et al。,2012; Laffleur 44&Kküpepersan al an al al an al an al an al an al an al an al an al an an al an al an al an an al an al an al an al an al an al an al an al an al and a an and 201;替代方案是液体45或凝胶的频繁应用(3-5/天),导致患者依从性差。商业粘膜粘附设计基于水46肿胀聚合物,这些聚合物通过组织表面的聚合物纠缠粘在软组织上(Smart,47,2014年)。设计相对安全,但是不受控制的吸水会导致48个粘附力随着时间的推移而恶化(0.5-5 kPa,假设面积为2 cm 2)(El Azim等,2015; Kumria等; Kumria et 49 al。因此,水凝胶50结构在脱落前的固定量为6-8小时(Nafee等,2004; Perioli等,51 2004; Santocildes-Romero等,2017)。粘附性设计将得到改善,从而防止凝聚力和粘合性衰竭(Smart,2014)。延长保留率将导致口腔病变处增加接触时间增加,扩展治疗剂量并提供屏障54(Colley等,2018; Santocildes-Romero等,2017)。55
中性粒细胞对于保护宿主免受入侵病原体至关重要,但可以通过遵守整个人体周围组织中炎症的微血管网络来促进镰状细胞病(SCD)的疾病进展。在炎症反应期间,白细胞使用Selectin粘附分子从血液中外出外出,并通过激活整联蛋白而迁移到组织损伤部位,而整联蛋白对于对抗病原体必不可少。然而,在与SCD相关的血管结合期间,在链接和滚动的链球上,嗜中性粒细胞被激活,在被激活的内皮细胞上上调的selectecon蛋白上,该线血管上调。最近,我们报道了中性粒细胞滚动过程中e-选择蛋白对L-选择蛋白对L-SELECTIN的识别,会引发抗剪切力的抗力量粘结键,从而促进链接到内皮和激活整合蛋白键簇,从而将细胞锚定在容器壁上。证据表明,阻止这种重要的信号传导级联反应可防止微脉管系统中的充血和缺血,这是由于中性粒细胞捕获镰状红细胞的捕获而发生的。最近完成了针对选择蛋白的疗法的两项临床试验及其对小血管中嗜中性粒细胞激活的影响揭示了机械调节的重要性,即在健康中是一种免疫适应性,可促进快速和比例的白细胞粘附,同时维持组织灌注。我们及时提供了对血管核危机(VOC)的机制的及时观点,其重点是针对靶向选择素介导的整联蛋白粘附粘合键形成的新药。
靶向溶栓的想法可以追溯到近三十年前。Dewerchin 及其同事设计了一种由抗血小板抗体和单链尿激酶 (sc-uPA) 组成的生物共轭物,以在啮齿动物模型中证明概念(就血凝块溶解和出血时间而言)。5 20 世纪 90 年代末,Yang 及其同事开发了一种由电荷修饰的抗纤维蛋白抗体和 tPA 组成的两部分系统,它们通过静电相互作用连接在一起,这种相互作用可以通过鱼精蛋白(一种碱性肽)和临床肝素解毒剂来消除。6,7 后来,设计了一种由治疗剂量的肝素触发的靶向血小板的静电纳米复合物 8 ,使用来自纤维蛋白原 γ 链的 14 聚体肽序列,该序列对活化的血小板表面(糖蛋白 IIb/IIIa)具有高亲和力。 8,9 tPA 的前体药物类型中还加入了内源性触发剂,该触发剂可通过血栓附近的凝血酶梯度激活。10 此外,在过去十年中,人们对寻找一种结合靶向和释放机制的颗粒型纳米载体以递送溶栓剂的兴趣日益浓厚。Vyas 和同事设计了一种脂质体载体,脂质体表面有 RGD 肽,用于递送由血凝块剪切力触发的链激酶。11,12 超声触发纳米系统似乎很有前景:阳离子化明胶/tPA 复合物 13,14 和微泡。15 最后但并非最不重要的是,超顺磁性纳米颗粒也用于靶向递送溶栓剂。16
使用各种悬臂探针针尖多次探测具有薄焊盘铝 (Al)(厚度小于 0.7µ)的 IC 键合焊盘。探针标记由具有各种针尖直径的实验性高强度探针卡创建。将探针针尖的有限元模型与探针标记擦洗长度相匹配,以更学术地了解随着探针参数的变化会发生什么。使用此模型进行模拟将有助于未来进行物理实验困难或成本高昂的情况。实验中的键合焊盘包括各种安森美半导体电路焊盘下 (CUP) 结构,该结构具有 Al 金属化和二氧化硅 (SiO 2 ) 互连,先前已证明与传统 IC 键合焊盘相比具有更强的抗开裂能力。随着未来产品的焊盘缩小,更小的球尺寸和键合接触面积是可取的,但这会加剧探针标记的任何不利影响,因为键合下方的相对面积百分比会增加。实验评估包括对各种探针标记范围内不同球直径的金 (Au) 球键合的键合拉力强度 (BPS) 和键合剪切力 (BS),以开始检查引线键合中惯常的“探针标记面积”最大限制的有效性。数据表明,大而深的探针标记确实会导致键合球提升失败,尤其是对于未优化的键合配方。看来探针标记深度,而不是面积,是键合可靠性中最不利的因素。在更受控制和“温和”的制造情况下,预计不会出现与探针标记键合相关的问题。