摘要 — 在三相四线低压配电系统中,不平衡负载会导致中性电流 (NC) 形成环路,从而导致功率损耗增加和中性电位变化。与传统电力变压器相比,智能变压器 (ST) 具有严格的电流限制以避免过流。然而,其在下游低压电网电压调节方面的优势可以提供调节过度 NC 的能力。本文提出了一种闭环 NC 优化控制,一方面,在满足标准 EN 50160 要求的正常运行中最小化 NC 电流,另一方面,在极端情况下抑制 NC 电流以避免 ST 过流损坏。根据曼彻斯特地区三相四线配电网,通过硬件在环设置和基于不平衡负载曲线下的 350kVA、10kV/400V、ST 供电配电网的案例研究,通过实验测试验证了所提出的控制策略。结果清楚地证明了所提出的NC优化控制策略对NC抑制和最小化的有效性和灵活性。
AlGaN/GaN高电子迁移率晶体管(HEMT)或金属绝缘体半导体HEMT(MIS-HEMT),凭借优越的极化诱导高迁移率二维电子气(2DEG),因其高开关速度、低寄生参数和低导通电阻而受到广泛关注,并在高频射频和功率开关应用方面都取得了公认的成功[1-4]。通常在厚钝化电介质(如SiNx)上设置栅极和/或源极场板,以减轻栅极漏极区域的高电场并获得更高的击穿电压[5-7]。它们也有助于抑制表面态引入的电流崩塌[5,8]。然而,场板结构将引入额外的寄生电容,导致更高的VDS×IDS功率损耗和更长的开关持续时间。此外,钝化层还会引入钝化电介质/(Al)GaN界面态,甚至电介质本身的体态,它们的捕获/去捕获过程会引起寄生电容的动态漂移,导致实际应用中开关转换紊乱,dV/dt控制失效[9-11]。
近几十年来,人们对微电网的兴趣日益浓厚,它带来了诸如能源效率、减少生产污染、系统可靠性等重要条件。微电网作为智能电网的关键,在降低功率损耗、改善电压曲线、减轻污染物排放、提高电力系统可靠性和质量方面发挥着至关重要的作用。本文考虑了卡拉布克大学微电网的技术经济和环境分析。利用 HOMER(能源混合优化模型)软件对卡拉布克大学校区的微电网进行了优化、灵敏度、需求响应和污染物排放模拟和分析。技术经济和环境分析的结果表明,在 25 年的使用时间内,新型分布式发电将得到整合。在提出的情景中,合法能源成本为 0.284 美元,可再生能源比例为 14.8%,净现值成本和运营成本分别下降至 11.28% 和 21.21%。结果表明,所提出的混合微电网系统有助于实现清洁大学校园的理念,并以最佳的投资回报时间提供最低的电力成本。
分流电流是在流动电池堆栈中产生的难以捉摸的效果,尽管这是内部损失的主要原因,但仍受到部分关注,直接影响效率和可操作性。现有研究用电阻器网络对其进行建模。首次,由于同源电极之间的电势差,本文对在流体电解质中移动的电荷载体进行了基础分析。将钒化学作为研究案例,用Navier-Stokes,Nernst-Planck and Cancervertice方程分析了离子V 2+,V 2+,V 3+,VO 2+,H+,HSO 4 - ,SO 4 2的导电性,扩散和对流运动。3D和2D数值实现允许分析稳态和瞬态条件。分流电流的贡献是在不同尺寸和不同负载下的堆栈中计算出来的,这表明功率损耗范围从5细胞堆栈中的0.17%到40细胞堆栈中的6.9%不等,在较低的负载电流下较高。该方法允许识别影响分流电流的主要因素,例如膜的渗透率,电极孔隙率和流通道设计。这些结果阐明了减轻分流电流的策略,以提高效率。
摘要:可再生能源整合已成为配电系统不可或缺的一部分。风能和太阳能渗透率高的能量存储设备正成为支持由于可再生能源电力间歇性而导致的功率不匹配的关键部件。可再生能源以及存储设备需要最佳放置,以确保配电系统高效运行。本文分析了电池储能以及分布式发电 (DG) 在混合配电系统中的影响。本文的主要贡献是:(i) 使用组合功率损耗灵敏度指数对 DG 进行最佳选址和定型,(ii) 基于组合功率调度策略对电池储能进行最佳位置和定型,(iii) 最小化系统的总功率损耗和燃料成本。计算了充电和放电期间的电压曲线、燃料成本、电池安装成本、电池存储大小和电池能量。针对 IEEE-33 总线测试系统获得了结果,并与文献中现有的方法进行了比较。使用通用代数建模系统 (GAMS) 和 MATLAB 接口解决了优化问题。关键词:径向配电系统、可再生能源、电池储能装置、损耗最小化、最佳尺寸和位置选择。,
摘要 本教程将讨论数据中心/服务器以及 AI 和机器学习系统中使用的 48V 至 0.7V (2,000A) 电源转换器所面临的挑战和解决方案。将讨论和比较两种电源架构。第一种架构是两级架构,其中 48V 转换为 12V(或另一个中间电平),然后将 12V 转换为 0.7V。第二种架构是“单级”,其中 48V“直接”转换为 0.7V。使用“直接”转换架构,无法访问(可见)中间电压总线。在简要介绍广泛应用于数据中心、服务器等的 OAM(OCP 加速器模块)的背景信息和功率要求之后,本教程将提供对降低功率损耗和提高功率密度的技术的新认识。本教程将首先回顾两级架构的最新技术并评估其优点和局限性。然后,本教程将回顾“单级”架构的最新技术并评估其优缺点。基于上述分析和回顾,本教程将提出并讨论 48V 至 0.7V(低至 0.3V)、2,000A(或更高)的应用研究方向,以实现极高的效率、极小的尺寸和电流共享、可扩展、快速动态响应等。
摘要:本文提出了一种有效的方法来解决配电系统 (DS) 中的可再生分布式发电机 (RDG) 和电动汽车充电站 (EVCS) 分配问题,以减少功率损耗 (P 损耗) 并改善电压曲线。这项工作考虑的 RDG 包括太阳能、风能和燃料电池。使用概率分布函数 (PDF) 对与 RDG 相关的不确定性进行建模。这些来源的最佳位置和大小由电压稳定性指数 (VSI) 和政治优化算法 (POA) 确定。此外,还考虑了电动汽车充电策略,例如传统充电方法 (CCM) 和优化充电方法 (OCM),以研究该方法的有效性。在印度 28 路公交车 DS 上研究了所开发的方法。考虑了不同的情况,例如单个 DG、多个 DG 以及 DG 和 EV 的组合。考虑到适当的调度模式,将多个 DG 与 EV 一起放置可以最大限度地减少 P 损耗并显着改善电压曲线。最后将所提方法与其他算法进行了比较,仿真结果表明POA方法在各方面均取得了更好的效果。
通过四波混频产生光对波分复用 (WDM) 这一快速发展的电信领域有着严重影响。WDM 系统使用多个通道(通常为 16 或 32 个)通过光纤发送数据,每个通道都有自己的指定频率。如果两个或多个通道通过四波混频相互作用,则将以新频率产生光功率,但代价是原始通道的功率降低。这种功率损耗使得在光纤远端正确检测这些通道中的数字数据变得更加困难,从而更容易出错。更严重的后果是,两个或三个通道之间的 FWM 产生的光的频率与其他分配的通道之一一致。然后,FWM 产生的光会在该通道上充当噪声,导致整个系统性能进一步下降。因此,采取措施避免多通道光通信系统中的四波混频非常重要。通过确保不发生相位匹配,可以最大限度地减少 WDM 系统中的四波混频。这可以通过使用多种方法来实现,包括不均匀地间隔通道和在通道以不同速度传播的波长下操作。第 2 节将更详细地讨论此主题。
通过增加储能系统 (ESS) 可以提高配电网的能源效率。这些系统的战略布局和适当大小有可能显著提高网络的整体性能。适当尺寸和战略位置的储能系统有可能有效解决峰值能源需求,优化可再生和分布式能源的增加,协助管理电能质量并降低与扩大配电网相关的费用。本研究提出了一种利用蒲公英优化器 (DO) 来找到配电网中 ESS 的最佳位置和大小的有效方法。目标是降低系统的年度总成本,其中包括与功率损耗、电压偏差和峰值负荷需求相关的费用。本研究中概述的方法在 IEEE 33 总线配电系统上实施。将所提出的 DO 获得的结果与原始系统的结果进行对比,以说明 ESS 位置对总体成本和电压曲线的影响。此外,还对 Ant Lion 优化器 (ALO) 的结果和预期的实验设计 DO 进行了比较,结果显示 DO 比 ALO 节省了更多成本。所推荐方法的简单性和解决所研究优化问题的有效性使所获得的 ESS 位置和大小有利于在系统内实施。
摘要:由于离线控制光伏 (PV) 电站不具备在线通信和远程控制系统,因此无法实时调节功率。因此,在离线控制光伏饱和的配电网中,配电系统运营商 (DSO) 应考虑可再生能源的不确定性来调度分布式能源 (DER),以防止因过压而导致的限电。本文提出了一种使用移动储能系统 (MESS) 和离线控制光伏的日前网络运行策略,以最大限度地减少功率削减。MESS 模型有效地考虑了 MESS 的运输时间和功率损耗,并模拟了各种操作模式,例如充电、放电、空闲和移动模式。优化问题基于混合整数线性规划 (MILP) 制定,考虑到 MESS 的空间和时间操作约束,并使用机会约束最优潮流 (CC-OPF) 执行。离线控制光伏的上限基于概率方法设定,从而减轻由于预测误差导致的过电压。所提出的运行策略在 IEEE 33 节点配电系统和 15 节点运输系统中进行了测试。测试结果证明了所提出方法在离线控制光伏系统中最小化限电的有效性。