尽管对集成光谱仪的需求紧迫,但仍缺少提供高性能同时实用的效果的解决方案。此外,当前的集成光谱仪缺乏其性能的可重构性,这对于动态工作场景非常可取。这项研究通过在硅上证明了一个用户友好,可重构的光谱仪,提供了可行的解决方案。该创新光谱仪的核心是一个可编程的光子电路,能够表现出不同的光谱响应,可以使用芯片相变换个器对其进行显着调整。我们光谱仪的区别特征在于其反向设计方法,促进了轻松控制和对可编程电路的有效操纵。通过消除对复杂配置的需求,我们的设计减少了功耗并减轻控制复杂性。此外,我们的可重构光谱仪提供了两个不同的操作条件。在超高的绩效模式下,它被多个相移的动物激活,并在维持宽带宽度的同时,在图表尺度上实现了异常的光谱分辨率。另一方面,使用易用模式进一步简化了控制逻辑并通过操纵单相移位器来减少功耗。尽管此模式提供了大约0.3 nm的光谱分辨率略有降级,但它优先考虑易用性,并且非常适合超细光谱重建不是主要要求的应用。
光接收器的性能受到互补金属氧化物半导体 (CMOS) 运算放大器 (op-amps) 设计的显著影响,这种设计受益于 CMOS 技术的进步,可降低噪声和功耗。本研究概述了低噪声 CMOS 运算放大器的设计过程,旨在实现高质量的信号输出,这对于必须尽量减少噪声干扰的专业音频设备和精密仪器等应用至关重要。通常,降低噪声的努力会导致速度降低和功耗增加。因此,实现性能参数的最佳平衡至关重要,噪声水平是主要关注点。提出了一种有效的设计方法来提高运算放大器的整体性能。采用分析方法来深入了解设计,优先考虑噪声性能。设备尺寸和偏置条件是根据噪声水平、带宽、信号摆幅、斜率和功耗等几个因素确定的。已经开发了一个两级运算放大器来验证所提出的设计方法。通过该方法得出的器件参数与使用 MATLAB 生成的模拟结果非常吻合,强调了设计过程的准确性和有效性。
摘要 — 统计技术经常用于预测电子系统的性能。工艺变化考虑了制造时材料参数的不确定性,会对模拟集成电路的产量产生不利影响。对由于制造参数变化而导致的模拟电路关键输出参数变化进行统计分析,以预测产量,是模拟芯片制造中必不可少的步骤。在这项工作中,我们使用严格的统计方法来检查典型模拟电路的性能。我们设计了一个 65 nm 技术的两级 CMOS 差分放大器配置,使用 ACM 模型参数来检查工艺变化下的产量。我们采用三种不同的蒙特卡罗模型(均匀、高斯、最坏情况)来检查设计的 CMOS 差分放大器关键性能参数的统计变化。据报道,在典型工艺参数变化 10% 的情况下,关键差分放大器参数、最大增益、增益裕度和相位裕度都会发生变化。在最坏情况分布的情况下,变化最大,而在高斯分布的情况下,变化最小。结果表明,工艺变异对设计的CMOS差分放大器的成品率有显著影响。在高斯分布的情况下,增益裕度(dB)、相位裕度(度)和最大增益(dB)的标准差分别为11、25和24。
高效的硬件-细胞通信对于理解细胞状态和控制细胞至关重要,是推进下一代人机界面的关键途径。在这里,我们提出了一种基于天然纤维素的节能神经装置,解决了传统接口通信硬件的局限性,特别是在材料生物相容性和生物信号匹配方面。基于纤维素的装置有效地模拟了生物突触连接的可塑性,并在低至 10 mV 的连续脉冲刺激下表现出学习行为。值得注意的是,它表现出卓越的数模转换性能,最低功耗为 0.1 nJ,有助于实现高效的界面生物信号匹配。此外,引入了一个分子级模型来阐明电刺激引起的纤维素分子内极性键的旋转。这种旋转改变了材料的相对介电常数,揭示了数模转换能力和类似神经的行为。此外,透明纤维素薄膜既可作为介电层,又可作为机械支撑,使设备能够在各种曲率下保持功能稳定性。这项研究中,基于纤维素的灵活且生物相容性的神经装置不仅可以有效地模拟突触,而且由于其低功耗信号转换,有望在脑机接口应用中实现有效的生物信号匹配。
摘要 BETA 专用集成电路 (ASIC) 是一种完全可编程的芯片,旨在放大、整形和数字化多达 64 个硅光电倍增管 (SiPM) 通道的信号,功耗约为 ∼ 1 mW/通道。由于其双路增益,BETA 芯片能够解析信噪比 (SNR) >5 的单个光电子 (phes),同时实现 ∼ 4000 phes 的动态范围。因此,BETA 可以为太空任务和其他应用中的最大速率低于 10 kHz 的 SiPM 读出提供经济高效的解决方案。在本研究中,我们描述了 BETA ASIC 的主要特性,并对其 16 通道版本的性能进行了评估,该版本采用 130 nm 技术实现。ASIC 还包含两个鉴别器,可以提供触发信号,对于 10 phes,时间抖动低至 400 ps FWHM。对于高达 15 位的动态范围,电荷增益测量的线性误差小于 2%。
图2显示了两个简化的热失控序列:在左侧,右侧和右侧的序列,而没有早期气体排气。在早期气体排气时,细胞外壳会在整个热失控之前的一段时间内打开并释放气体。在这些示例中,我们假设内部细胞衰竭会导致意外连续的局部加热,然后过热,最终融化了阳极和阴极之间的内部分离器。一旦分离器在细胞中本地的某个地方失败,阳极和阴极侧都会直接接触。现在同时发生了几种效果:接触中的活动材料在强烈的放热反应中直接反应,这可能取决于使用的细胞化学。此外,电池电压下降至零,并且电荷载体不受控制地从一侧移到另一侧,随后是加速的局部热产生。生成的热量融化了更多的分离器,因此此事件在整个单元格中传播为完整的热失控,并产生强大的气体,并且电池室中的压力增加。取决于细胞化学及其反应性,整个过程可能只需几秒钟,例如对于高镍细胞(例如,nmc),也可以在无镍细胞(如LFP)的分钟范围内。还有其他因素会对这种行为产生影响,例如细胞的外形或活动材料的涂层厚度。
1. 本文档中提供的电路、软件和其他相关信息的描述仅用于说明半导体产品和应用示例的操作。您对在产品或系统设计中整合或以其他方式使用电路、软件和信息负全部责任。瑞萨电子对于您或第三方因使用这些电路、软件或信息而遭受的任何损失和损害不承担任何责任。2. 瑞萨电子在此明确声明,对于因使用本文档中描述的瑞萨电子产品或技术信息(包括但不限于产品数据、图纸、图表、程序、算法和应用示例)而导致的侵权或涉及第三方专利、版权或其他知识产权的任何其他索赔,瑞萨电子不承担任何担保和责任。3. 瑞萨电子或其他方的任何专利、版权或其他知识产权均未以明示、暗示或其他方式授予许可。 4. 您应负责确定需要从任何第三方获得哪些许可,并在需要时获得此类许可,以便合法进口、出口、制造、销售、使用、分销或以其他方式处置任何包含瑞萨电子产品的产品。 5. 您不得更改、修改、复制或逆向工程任何瑞萨电子产品,无论是全部还是部分。瑞萨电子对因此类更改、修改、复制或逆向工程而导致您或第三方遭受的任何损失或损害不承担任何责任。 6. 瑞萨电子产品根据以下两个质量等级分类:“标准”和“高质量”。每种瑞萨电子产品的预期应用取决于产品的质量等级,如下所示。 “标准”:计算机;办公设备;通信设备;测试和测量设备;视听设备;家庭
1.本文档中提供的电路、软件和其他相关信息的描述仅用于说明半导体产品和应用示例的操作。您完全负责在产品或系统设计中整合或以其他方式使用电路、软件和信息。瑞萨电子不承担因使用这些电路、软件或信息而导致您或第三方遭受的任何损失和损害的任何责任。2.瑞萨电子在此明确声明,对于因使用本文档中描述的瑞萨电子产品或技术信息(包括但不限于产品数据、图纸、图表、程序、算法和应用示例)而导致的或由此引起的涉及第三方专利、版权或其他知识产权的侵权或其他索赔,瑞萨电子不承担任何担保和责任。3.在此不授予瑞萨电子或其他方的任何专利、版权或其他知识产权,无论是明示、暗示还是其他方式的许可。4.您应负责确定需要从任何第三方获得哪些许可,并在需要时获得此类许可,以便合法进口、出口、制造、销售、使用、分销或以其他方式处置任何包含瑞萨电子产品的产品。5.您不得更改、修改、复制或逆向工程任何瑞萨电子产品,无论是全部还是部分。瑞萨电子对因此类更改、修改、复制或逆向工程而导致您或第三方遭受的任何损失或损害不承担任何责任。6.瑞萨电子产品根据以下两个质量等级进行分类:“标准”和“高质量”。瑞萨电子产品的每种预期应用取决于产品的质量等级,如下所示。“标准”:计算机;办公设备;通信设备;测试和测量设备;音频和视频设备;家庭
摘要 本研究提出了一种创新技术,基于一种高效的低功耗 VLSI 方法,设计用于信号和图像处理中混频电路应用的 4 位阵列乘法器。建议的架构使用近阈值区域的绝热方法来优化传播延迟和功耗之间的权衡。乘法器是许多数字电子环境中必不可少的组件,因此诞生了许多针对特定应用定制的乘法器类型。与传统 CMOS 技术相比,该技术显著降低了动态和静态功耗。近阈值绝热逻辑 (NTAL) 使用单个时变电源实现,从而简化了时钟树管理并提高了能源效率。使用 Tanner EDA 工具和 Spectre 模拟器在 TSMC 65 nm 技术节点上对建议的设计进行仿真,以确保验证优化结果。与典型的 CMOS 方法相比,在保持相似设计参数的情况下,可变频率、电源电压和负载电容的功耗分别显著改善了约 66.6%、14.4% 和 64.6%。值得注意的是,随着频率变化,负载电容保持恒定在 C load = 10 pF 和 VDD (max) = 1.2 V;随着电源电压变化,负载电容保持恒定在 C load = 10 pF 和频率 F = 4 GHz;随着负载电容变化,频率保持在 F = 4 GHz 和电源电压 VDD (max) = 1.2 V。关键词:- 4 位阵列乘法器、绝热逻辑、低功耗 VLSI、近阈值区域、NTAL 方法、TSMC 65 nm CMOS 技术、混频器电路、信号和图像处理、能源效率、Tanner EDA、Spectre 模拟器和功耗优化。