摘要 — 本文介绍了一种完全集成的亚阈值 LC 压控振荡器 (VCO)。还提出了一种设计方法来寻找降低功耗的最佳参数。该方法已应用于设计不同频带的振荡器。此外,自适应体偏置技术已用于改善启动约束并允许对 PVT(工艺、电压和温度)变化具有很高的免疫力。利用所提出的方法,在 0.13μm CMOS 中实现了在 5 GHz ISM(工业、科学和医疗)频段工作的 VCO。它在 0.39V 电源电压下仅消耗 468 μW。这使得满足自主连接对象和物联网应用所需的规格成为可能。测得的振荡频率可以从 5.14 GHz 调整到 5.44 GHz。获得的相位噪声在布局后仿真 (PLS) 中约等于 – 112 dBc/Hz,在测量中约等于 -104.5 dBc/Hz。
摘要 — 本文介绍了一种实时温度补偿功率检测器的设计和特性。该检测器的工作频带为 (40.5 – 42.5) GHz,专用于优化 5G 设备的功耗。本文提出了一种新颖而简单的技术来补偿电压灵敏度值 (γ) 随温度的变化。该技术基于添加一个无源电路,该电路充当具有正温度系数的电阻器,在较高温度下吸收较少的输入功率。结果,测量表明,灵敏度值随温度的下降被抑制了 55% 以上,因此,在频率 41 GHz 下,该值在温度范围 (20~100)°C 内变化很小 (γ = 1530 V/W±6%)。与最近发表的作品相比,所提出的检测器电路非常简单,并且没有功耗。此外,它以更高的频率运行,以适用于 5G 应用。
此设计旨在为客户提供具有成本优化物料清单的即用型小型毫米波车内雷达传感器。在此设计中,由 PMIC 导轨(3.3V、1.8V 和 1.2V)供电的 AWRL6432 设备无需多个 DC-DC 转换器,并使设计具有极小的外形尺寸。为此板设计的天线能够提供 120°(方位角)× 120°(仰角)视场、3.5GHz 带宽和 6 至 7dBi 峰值增益,并采用高性能 Rogers ® RO3003 ® 材料。此参考设计还采用了 TI 的低成本、小型、低功耗 Derby PMIC 和 CAN PHY。板载连接器(J1、J2 和 J3)引出各种通信外设(UART、RS232、SPI、CAN、LIN、JTAG、I2C、GPIO)、SOP、PWR 和 GND,包括一个专用的 10 针连接器 (J1),用于直接连接 LP-XDS110,从而简化了电路板的操作。设计中使用的板载连接器间距为 1.27 毫米,这也有助于减小电路板的整体尺寸。
小型啮齿动物会给农场带来问题,例如基础设施损坏、农作物损失或病原体传播。后者对人类和牲畜都构成威胁。野生啮齿动物和牲畜之间的频繁接触有利于病原体传播,因此了解小型哺乳动物的运动模式对于制定预防损害和健康问题的策略非常重要。微型近距离记录器是一种新开发的用于监测小型哺乳动物空间行为的工具。蓝牙低功耗 (BLE) 信号的强度可用作野生啮齿动物与牲畜饲养地点密切接触的指标,这对于识别可能的传播途径很重要。该方法研究侧重于该技术在农业环境中的使用以及在用于畜牧业的农业环境中测试和校准该技术的试运行。结果表明,记录器的电池寿命主要受预设扫描间隔的影响。短扫描间隔会导致电池寿命缩短,应根据目标物种的活动模式最大化。栖息地会影响 BLE 信号强度,导致室内信号强度高于室外。记录器位置的高度对牲畜圈内的信号强度有积极影响。信号接收通常随着距离的增加而减小,并且不同记录器的信号接收也不同,因此需要进行校准。在特定栖息地的距离内,BLE 近距离记录系统可以识别小型哺乳动物之间以及动物与特定结构之间的接触。这些结果支持在畜牧业环境中使用基于 BLE 的系统,并为经过验证的技术提供了大量证据。此外,这种方法可以为可能的病原体传播途径提供有价值的见解。
TDK 企业在 2025 年 CES 上为人工智能新时代铺平道路 ● TDK 将 AI、绿色转型和数字化转型确定为未来十年的大趋势 ● 关键发展包括用于节能 AI 计算的“自旋忆阻器”和集成边缘传感、组件和 AI 功能的工业 4.0 解决方案的 TDK SensEI 的形成 ● 为汽车、工业、能源和 ICT 领域提供尖端解决方案 ● 战略合作伙伴关系包括与 NEOM McLaren Formula E 车队在赛车创新方面的技术合作,以及即将发布的视障人士无障碍产品 2024 年 12 月 10 日 TDK 公司 (TSE: 6762) 将于 2025 年 1 月 7 日至 12 日在内华达州拉斯维加斯举行的年度消费电子展 (CES) 上展出。总部位于东京的 TDK 公司是智能社会电子解决方案的全球领导者之一,正在拥抱人工智能的崛起。预计未来十年该领域将快速增长,因此该公司正在制定创新和业务战略,以充分利用人工智能的潜力。TDK 还强调绿色转型和持续数字化是塑造其未来重点的关键全球趋势。在拉斯维加斯会议中心中央大厅的 15815 号展位上,TDK 展示了其新制定的长期愿景“TDK 转型:加速转型,实现可持续未来”。通过其创新产品,TDK 致力于推动技术进步并促进有意义的社会转型。为了实现这一目标,TDK 不断突破创新的界限,专注于先进材料、尖端制造工艺以及提高客户应用中的产品性能。人工智能已经改变了日常生活的许多方面,并将继续影响行业、自动化和技术。TDK 的解决方案旨在解决人工智能应用面临的关键挑战,例如高功耗,从而实现更高效和更广泛的使用。通过结合传感器融合、先进组件、软件和人工智能,TDK 能够推动创新并改变其主要市场,包括汽车、工业和能源以及 ICT。关键行业的变革性解决方案 ● 汽车:TDK 为电动汽车和高级驾驶辅助系统 (ADAS) 提供广泛的尖端解决方案组合。该公司的全面展示展示了其全系列的组件和传感器技术,特别强调了其 6 轴 IMU 和压电 MEMS 镜技术。 ● 工业和能源:TDK 的集成方法结合了人工智能、传感器融合和先进组件,以推动环境可持续性发展并应对关键的工业挑战,优化能源效率,提高生产力并促进可持续实践。值得关注的创新包括其柔性薄膜压电传感器解决方案和超声波飞行时间传感器。● ICT:TDK 将展示旨在实现更智能、更可靠、更环保的通信系统的解决方案,包括先进的高精度定位传感器和用于直接视网膜投影的超紧凑全彩激光模块,这些技术有望彻底改变增强和虚拟现实体验。
通过开源或Ti许可的工具,库和框架来理解自己的目的,以自己的目的为自己的目的,将其用于自己的基于Ti的雷达产品。
摘要 — 机器学习 (ML) 技术的快速发展推动了专用硬件加速器的发展,旨在促进更高效的模型训练。本文介绍了 CARAML 基准测试套件,该套件用于评估在一系列硬件加速器上训练基于 Transformer 的大型语言模型和计算机视觉模型时的性能和能耗,包括 NVIDIA、AMD 和 Graphcore 的系统。CARAML 提供了一个紧凑、自动化、可扩展和可重复的框架,用于评估各种新型硬件架构中 ML 工作负载的性能和能耗。本文详细讨论了 CARAML 的设计和实现,以及一个名为 jpwr 的自定义功率测量工具。索引术语 — 机器学习、能量、NLP、计算机视觉、AI、性能测量、基准、GPU、IPU、加速器
摘要 — 近几十年来,随着芯片制造技术的进步,使用 mW 范围内的低复杂度 ML 可以实时监测患者,生物医学领域的低功耗可穿戴设备的设计受到了广泛关注。尽管应用和硬件设计研究取得了进展,但该领域缺乏系统的硬件评估方法。在这项工作中,我们提出了 BiomedBench,这是一个新的基准套件,由完整的端到端 TinyML 生物医学应用程序组成,用于使用可穿戴设备实时监测患者。每个应用程序在典型的信号采集和处理阶段都有不同的要求,包括不同的计算工作量以及活动时间和空闲时间之间的关系。此外,我们对五个最先进的低功耗平台的能效评估表明,现代平台无法有效地针对所有类型的生物医学应用。BiomedBench 作为开源套件发布,旨在标准化硬件评估并指导 TinyML 可穿戴领域的硬件和应用程序设计。
摘要——本文提出了一种新颖的近似乘法器设计,该设计在保持高精度的同时实现了低功耗。所提出的设计利用近似高阶压缩器来降低部分乘积生成和累积的复杂性。通过放宽压缩器的精度要求,可以在不影响精度的情况下显著节省功耗。近似乘法器采用混合方法设计,结合了算法和电路级近似。所提出的近似乘法器适用于容错应用,例如数字信号处理、图像和视频处理以及机器学习。该设计展示了功率、面积和精度之间的最佳权衡,使其成为节能计算的有吸引力的解决方案。
表格索引 表 1:基本参数表......................................................................................................................- 5 - 表 2:KEY 功能定义表...............................................................................................................- 6 - 表 3:工作及存储温度表..............................................................................................................- 7 - 表 4:功耗表.............................................................................................................................- 7 - 表 5:射频特性.............................................................................................................................- 7 - 表 6:距离测量.............................................................................................................................- 8 - 表 7:模块引脚 ESD 耐压.............................................................................................................- 8 -