对于军用飞机而言,燃气涡轮发动机制造商和最终用户面临的一个关键问题就是耐久性。尤其是加力燃烧段的条件非常恶劣,发动机喷嘴的设计寿命通常只有涡轮发动机其他硬件的一半。目前的喷嘴基于由密封件和襟翼制成的轴对称可变喷嘴。这些组件必须承受极端温度(通常超过 1000°C)以及与加力燃烧器点火相对应的快速热循环。此外,加力燃烧段通常具有燃烧功能不均匀的特点,这会在某些喷嘴瓣上产生热条纹。因此,这些部件会受到非均匀热流的影响,襟翼和密封件的重叠设计尤其明显,从而在整个宽度上产生高热应力。镍基合金通常用于发散襟翼和密封部件。严酷的热机械环境使镍基部件产生大量开裂,再加上高温 1 导致的蠕变变形。结果是部件拆卸增加,直接影响可操作性、维护和成本。军用发动机对热段部件更长使用寿命和更高推重比的追求为陶瓷材料打开了大门。陶瓷基复合材料 (CMC) 适用于暴露在高温(高达 1000°C)下的加力燃烧段,包括高热梯度。因此,人们继续对在军用燃气涡轮发动机中开发、测试和部署 CMC 感兴趣,一些开发已经取得成功。这是为 F/A-18 E/F 超级大黄蜂 2 战斗机提供动力的 F414 发动机喷嘴引入 SiC/C CMC 的情况,以及为阵风 3 战斗机提供动力的 M88 发动机喷嘴外襟翼引入 C/SiC CMC 的情况。考虑用于燃气轮机部件的 CMC 涵盖了通过化学气相渗透 (CVI)、溶胶凝胶路线、聚合物渗透和热解 (PIP) 和熔融渗透 (MI) 4 制造的各种纤维和基质。所得材料能够承受排气喷嘴的高温和热疲劳。然而,CMC 组件的耐久性与其抗氧化性直接相关,这会影响其热机械潜力并导致部件破裂。已经对几种 CMC 密封件进行了地面测试,并在具有代表性的全地面发动机寿命后测量了机械性能。近几年,斯奈克玛推进固体公司 (SPS) 开发了先进的 SiC/SiC 和 C/SiC 材料,包括多层编织和自密封基质。普惠公司和空军研究实验室正在考虑将这些材料用于 F100-PW-229 发动机喷嘴发散密封件,该密封件为 F16 和 F15 战斗机提供动力。本文介绍了发动机经验和后测试特性的结果。将讨论材料系统对燃气轮机喷嘴应用的适用性。
材料可能会在诱发的个体中产生皮肤敏化。卸下手套和其他防护设备时,必须注意避免所有可能的皮肤接触。污染的皮革物品,例如鞋子,皮带和手表,应被拆除并破坏。选择合适的手套不仅取决于材料,而且还取决于质量的进一步标记,这些质量因制造商而异。如果化学物质是几种物质的制备,则无法预先计算手套材料的电阻,因此必须在应用之前检查。必须从防护手套的制造商那里获得精确的物质时间中断,并且在做出最终选择时必须观察到。个人卫生是有效手护理的关键要素。
摘要:本文介绍了柔性自动运输系统中工件转运机器人离散操作的控制算法和通信系统,研究了控制站主站综合系统和移动机器人从站控制器之间的信息传输和接收算法。
摘要 随着人工智能 (AI) 技术的进步,它将不可避免地给课堂实践带来许多变化。然而,教育领域的人工智能研究与教学观点或教学方法的联系较弱,特别是在 K-12 教育领域。人工智能技术可能使有上进心和先进的学生受益。需要了解教师在课堂上使用人工智能技术调解和支持学生学习方面所起的作用。本研究使用自我决定理论作为支撑框架,调查教师支持如何调节学生专业知识对需求满足和使用人工智能技术学习的内在动机的影响。这项实验研究涉及 123 名 10 年级学生,并在实验中使用聊天机器人作为基于人工智能的技术。分析表明,使用聊天机器人学习的内在动机和能力取决于教师支持和学生专业知识(即自我调节学习和数字素养),教师支持更好地满足了关联性需求,而不太满足自主性需求。研究结果完善了我们对自我决定理论应用的理解,并扩展了人工智能应用和教学实践的教学和设计考虑。
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
周期研究表明,提高发动机压力比和周期温度的好处是减轻发动机的重量并提高商用涡轮发动机的性能。NASA正在与行业合作,定义高级发动机和发动机技术的技术要求,以实现NASA先进的亚音速技术计划的目标。随着发动机操作条件变得更加严重,客户要求较低的运营成本,NASA和发动机制造商正在研究提高发动机效率和降低运营成本的方法。正在研究许多新技术,这些技术将使下一代发动机能够在更高的压力和温度下运行。提高密封性能 - 在需求条件下运行的同时降低泄漏和增加使用寿命 - 将在满足减少特定燃料组成并最终降低直接运营成本的整体计划目标中发挥重要作用。本文概述了先进的亚音速技术计划目标,讨论了高级密封开发的动机,并突出了密封技术要求满足未来发动机性能目标。
足够的碎片使电路通电并打开驾驶舱灯。现在有检测器可以自动清除正常磨损颗粒。但是,频繁的自我清除可能表明存在早期问题。因此,清除操作的频率指示(无论是自动的还是飞行员启动的)都将提供有用的诊断信息。基于振动信号分析的更复杂的监测技术也可用,并且可以纳入监测系统。
250 至 1000 马力的小型燃气涡轮发动机的性能明显低于大型发动机。这种尺寸的发动机通常用于旋翼机、通勤机、通用航空和巡航导弹应用。小型发动机效率较低的主要原因是众所周知的:由于尺寸效应,部件效率低 8 至 10 个百分点。由于叶片和冷却限制较小,小型发动机设计用于较低的循环压力和温度。为大型发动机发展起来的高度发达的分析和制造技术不能直接转移到小型发动机上。因此,人们认识到需要集中精力解决小型发动机的技术问题,这可能会显著影响其性能。最近,在 NASA/Army-AVSCOM 的联合赞助下,NASA 刘易斯研究中心进行了内部和合同研究,以确定先进的发动机循环和部件要求,以大幅提高小型燃气轮机的性能,以实现预计的 2000 年应用。本文介绍了内部研究和与 Allison、AVCO Lycoming、Garrett、Jeine CAE 和 Williams International 合作开展的合同研究的结果。重点强调了旋翼机的结果,预计可节省 22% 至 42% 的燃料。同时还估计直接运营成本将降低 11% 至 17%,具体取决于燃料成本。确定了适用于所有发动机应用的高回报技术,并描述了开发高回报技术的实验研究的最新结果。
非公路施工现场电气化的成功将取决于远见、规划和灵活性,因为设备、基础设施、存储和电力接入需要与当今的工作流程同步。沃尔沃建筑设备公司 (Volvo CE) 最近通过试验所谓的“电动施工现场”展示了此类努力。9 该项目通过在瑞典进行的实际测试绘制了电动设备的基础设施需求,旨在将供应链中的不同群体聚集在一起,了解如何在城市中使用电动设备。它专注于在不同的城市地点测试电动机、储能和充电基础设施。这有助于确定在现实环境中有效使用电动设备的不同技术和组织需求。
是概率度量的法律和弱收敛性的特征。对于更先进的应用程序分布和特征值的分布,Stieltjes Tranform不够强大,并且需要控制整个分解矩阵G K(z)。这是在I.I.D的[ALE+14]中进行了研究的。情况下,确定G k(z)接近涉及尺寸和频谱参数z的定量界限的g k(z)i p。此分析后来被携带到[KY17]中的线性依赖情况,表明G K(Z)接近确定性矩阵G(z),这通常不是身份矩阵的倍数。遵循[HLN07]的术语,我们将矩阵G(z)称为G K(z)的确定性等效词。在处理独立列的最一般情况下,[LC21]发现了类似的确定性等效物。值得注意的是,他们考虑了具有不同分布的列,这在先前的文献中未经研究。最后一篇文章不允许光谱参数z随维度而变化,尤其是用定量界限靠近真实轴。我们通过量化基础随机矩阵具有i.i.d的收敛来完成它来完成它。列。我们的结果包括两个不同的设置:当z是具有积极虚构零件的复数时,不会消失得太快,