滚转和偏航,以及飞机中这些状态的控制,是通过分别改变对升降舵、副翼和方向舵的指令信号来实现的。在本文中,我们仅考虑飞机的两种控制运动,即纵向和滚转运动。这两个控制面是用不同的智能控制器设计和实现的。飞机的这两种运动在飞行过程中很重要,在此期间飞机会从一种状态过渡到另一种状态。为了控制飞机的纵向和滚转运动,分别使用了一组称为升降舵和副翼的控制面。升降舵是位于固定翼飞机后部的可移动控制面,铰接在水平稳定器的后缘,与主翼平行运行,导致飞机旋转,导致飞机爬升和下降,并从机翼获得足够的升力,使飞机以各种速度保持平飞。升降舵是可移动的控制面,可以上下移动。如果升降舵向上旋转,则会减少尾部的升力,导致尾部降低而机头抬高。如果升降舵向下旋转,则会增加尾部的升力,导致尾部抬高而机头降低。降低飞机机头会增加前进速度,而抬高机头会降低前进速度 [1]。
是 6 叶 Dowty Rotol 后掠形螺旋桨。单个控制杆控制每个螺旋桨/发动机组合。辅助动力装置 (APU) 将被安装在尾部。飞机可容纳两名飞行员、一名观察员、两名乘务员、行李架、卫生间,并设有厨房。有一个前后储物舱和一个后货舱。飞机的最大飞行高度为 31,000 英尺。Saab 2000 具有全液压驱动的电子控制方向舵,并将具有全液压驱动的电子控制升降舵作为后续设计修改。动力升降舵控制系统 (PECS) 提供左右升降舵表面的控制和动力驱动。PECS 还提供飞机稳定性增强和配平功能。拟议的升降舵系统在许多方面与方向舵设计相似,由模拟和数字电路混合组成,没有机械备份。控制柱连接到线性可变差动传感器 (LVDT)、操纵杆阻尼器、自动驾驶伺服器、带断开装置的线性弹簧,并与电子断开装置互连。连接到控制柱的位置传感器 (LVDT) 向两个电动升降舵控制单元 (PECU) 提供信号。每个 PECU 通过两个独立的伺服执行器通道 (SAC) 控制两个升降舵伺服执行器 (ESA)。每个 SAC 细分为一个主控制通道和一个监控通道。由一个 PECU 控制的四个 ESA 中的两个定位一个升降舵侧。ESA 有两种操作模式:主动和阻尼。当 PECU 的模式控制电流和液压可用时,将产生主动模式。一个主动伺服执行器足以操作升降舵表面。升降舵伺服执行器阀门和执行器柱塞位置反馈由位置传感器 (LVDT) 提供。PECU 通过配平继电器和两台数字空气数据计算机连接到一台飞行控制计算机。飞行控制计算机还向自动驾驶伺服器提供信号。操纵杆到升降舵传动装置是指示空速 (IAS) 的功能。配平和稳定性增强基于 IAS、垂直加速度和襟翼位置。操纵杆、配平和升降舵位置和状态信息被馈送到发动机
是 6 叶 Dowty Rotol 后掠形螺旋桨。单个控制杆控制每个螺旋桨/发动机组合。尾部将安装辅助动力装置 (APU)。该飞机可容纳两名飞行员、一名观察员、两名乘务员、行李架、卫生间,并可安装厨房。有一个前后储物舱和一个后货舱。飞机的最大运行高度为 31,000 英尺。萨博 2000 具有全液压电子控制方向舵,并将具有全液压电子控制升降舵作为后续设计修改。动力升降舵控制系统 (PECS) 提供左右升降舵表面的控制和动力驱动。PECS 还提供飞机稳定性增强和配平功能。拟议的升降舵系统在许多方面与方向舵设计相似,由模拟和数字电路混合组成,没有机械备份。控制柱与线性可变差动传感器 (LVDT)、操纵杆阻尼器、自动驾驶伺服器、带断开装置的线性弹簧相连,并与电子断开装置互连。与控制柱相连的位置传感器 (LVDT) 向两个电动升降控制装置 (PECU) 提供信号。每个 PECU 通过两个独立的伺服执行器通道 (SAC) 控制两个升降舵伺服执行器 (ESA)。每个 SAC 细分为一个主控制通道和一个监控通道。四个 ESA 中的两个由一个 PECU 控制,用于定位一个升降舵侧。ESA 有两种操作模式,主动和阻尼。当 PECU 的模式控制电流和液压可用时,将产生主动模式。一个主动伺服执行器足以操作升降舵表面。升降舵伺服执行器阀门和执行器柱塞位置反馈由位置传感器 (LVDT) 提供。PECU 通过配平继电器和两个数字空气数据计算机连接到一台飞行控制计算机。飞行控制计算机还向自动驾驶伺服器提供信号。操纵杆到升降舵的传动装置是指示空速 (IAS) 的功能。配平和稳定性增强基于 IAS、垂直加速度和襟翼位置。操纵杆、配平和升降舵的位置和状态信息被传送到发动机
升降舵是飞行控制表面,通常位于飞机后部,用于控制飞机的俯仰、迎角和机翼升力。最关键的驱动装置是纵向飞机控制,其故障将导致灾难性的飞机坠毁。本文提出了一种飞机高冗余容错控制 (HRFTC) 策略,以适应关键传感器和执行器的故障。针对传感器提出了改进的三重模块冗余 (MTMR),针对执行器提出了双重冗余 (DR)。详细说明了控制律、飞行员命令、信号调节和故障的工作原理。此外,PID 控制器用于通过将升降舵位置与设定点进行比较来调整升降舵位置。结果表明,当发生故障时,系统成功检测到故障并快速容忍故障,而不会干扰飞机的飞行。这项研究对于航空电子行业制造高度可靠的机器以确保人身和环境安全具有重要意义。
起飞时,你会注意到,对于给定的升降舵输入,飞机的旋转速度比预期的要快得多。这表明:A) 重心太靠前 B) 压力中心在重心后方 C) 重心可能位于后方极限 D) 飞机超载 重心接近前方极限会产生什么影响?A) 爬升率降低 B) 爬升率能力提高 C) 诱导阻力减小 D) 特定燃油消耗减少 如果重心接近前方极限,飞机将:A) 起飞时倾向于过度旋转 B) 由于攻角减小而受益于阻力减小 C) 在给定空速下需要更少的功率 D) 需要升降舵配平,这会导致燃油消耗增加
起飞时,您会注意到,对于给定的升降舵输入,飞机的旋转速度比预期的要快得多。这表明:A) 重心太靠前 B) 压力中心位于重心后方 C) 重心可能位于后方极限 D) 飞机超载 重心接近前方极限会产生什么影响?A) 爬升率降低 B) 爬升率能力增强 C) 诱导阻力减小 D) 特定燃油消耗减少 如果重心接近前方极限,飞机将:A) 起飞时容易过度旋转 B) 由于攻角减小而受益于阻力减小 C) 在给定空速下需要更少的功率 D) 需要升降舵配平,这会导致燃油消耗增加
摘要 美国空军进行了数年早期研究,研究弹头引起的损伤对升力面的气动弹性完整性的影响,进而导致整架飞机的失稳。这促使我们研究飞机特定部位的冰堆积如何引发类似的气动弹性事件和飞机失稳。虽然很少研究,但结冰也会显著影响飞机的气动弹性稳定性,从而影响整个飞机的稳定性和控制,并最终导致不可逆的失稳事件。在后一种情况下,由于冰引起的质量不平衡或控制铰链力矩和力反转,可能会发生升力面和控制装置的经典颤振事件。此外,由于冰层堆积导致的分离流条件引入了显著的时间相关阻力,因此可能出现由控制装置和升力面的极限环振荡引起的控制效果损失。本文回顾了在考虑小型通用航空飞机类别时引发这些冰诱发的扰动事件的机制。该回顾基于文献和德克萨斯大学奥斯汀分校进行的早期实验工作。选择了两种常见的冰诱发飞机稳定性和控制扰动场景进行研究。介绍的第一个扰动场景涉及升降舵极限环振荡和由此导致的升降舵控制效果损失。第二个扰动与剧烈的机翼摇晃或不稳定的荷兰滚事件有关。
• CV OPS – 在岸基设施进行可靠且可重复的弹射发射和拦阻着陆 – 航母区域操作,包括离场、编队、进近、最后进近、复飞和释放 • MCS:近航母环境中的功能、接口和操作概念 • 甲板操作:飞行甲板/机库甲板上的操作(滑行、牵引、升降舵的启动和关闭、弹射器和拦阻装置的接合和脱离、加油/放油) • CV C3:坚固耐用/适用于航母环境
并安装。每组机翼都与每个机身相匹配。Ultimate 还具有独特的副翼设计,可提高空气动力学控制效率。您需要做的就是将它们用螺栓固定。副翼和升降舵控制面预先用铰链间隙密封件铰接,随附的碳纤维起落架只需用螺栓固定到位即可。玻璃纤维罩经过喷漆、预切割和碳纤维加固。还包括喷漆玻璃纤维轮罩,但可选的碳纤维轮罩以及 Ultimate 式碳纤维旋转器可单独购买。甚至还提供了控制偏转计。还有更多很棒的功能,不胜枚举。组装手册是我见过的最好的!