毫米级、大面积均匀半导体器件分层用于物理故障分析和质量控制 Pawel Nowakowski*、Mary Ray、Paul Fischione EA Fischione Instruments,Export,宾夕法尼亚州,美国* 通讯作者:p_nowakowski@fischione.com 不断发展的微电子设备设计越来越复杂、越来越紧凑和越来越小。这些设计可能包括越来越多的层、三维 (3D) 垂直堆叠、气隙和不同的材料成分。大批量半导体器件制造需要强大的质量控制和故障分析过程。过去几十年来,已经开发出了许多故障分析技术,包括非破坏性和破坏性技术 [1-3]。一种非常流行的技术是器件分层,即从上到下控制地去除器件层。通过这种技术获得的信息可以支持质量控制、故障分析工作、成品和工艺改进数据以及逆向工程。
汽车对设备在高应力和恶劣工作条件下运行的要求越来越严格。在这种情况下,钝化层在确定电气性能和可靠性方面起着根本性的作用。本研究重点关注应用于最先进功率器件的一次和二次钝化层及其对可靠性的影响。使用标准模块封装中组装的功率二极管作为测试载体,并进行高压温度湿度偏置测试以对结构施加应力。完整的故障模式分析突出了钝化层退化背后的现象。通过应用特定的无机和有机层组合来评估不同的钝化方案。最后,总结了典型的退化机制和相互作用。
我们提供一篇博士论文,研究液氦温度下半导体器件的老化机制。基于电气测量,确定并深入研究了 4.2 K 下的相关物理老化机制。开发或扩展了低温老化模型。过去二十年来,量子计算一直是基础研究中一个非常活跃的领域。在过去的 5 年里,它已经达到了成熟的水平,商业应用触手可及。英飞凌希望通过研究不同的量子系统及其在低温下的电子环境来推动这一发展,以便操纵和读取这些系统。在半导体器件中,许多物理效应会导致器件电气参数的漂移,进而导致整个电路故障。预测这种漂移在整个生命周期中的现象对于确保电路的功能性非常重要。对于量子计算应用,需要研究低温下的退化效应,并分别开发物理模型。
图 3:一组匿名真实数据集,用于说明压力测试面板数据的可能行为。图中显示了持续漂移、轻微上升轨迹、分组形成和变化的轨迹行为。
关于电子与通信工程系 电子与通信工程 (ECE) 学科将电子与通信领域的教学和研究活动完美地结合在一起。自成立以来,该学科的主要目标一直是提供优质教育、实践培训和电子与通信工程前沿领域的研究,重点关注 IT 支持的设计和制造。该学科的研究小组之间以及与其他学科和机构之间的跨学科研究也在实践中。该学科的研究和学术活动的广泛领域包括微波与通信工程、信号与图像处理、微纳电子学以及电力与控制。该系目前有 18 名教师。
高管教育是企业建立一种文化的迫切需要,这种文化可以促进新技术和解决方案的发展,并培养一支能够跟上技术、商业和监管领域快速变化需求的员工队伍。印度理工学院德里分校致力于让所有人都能接受优质教育,推出了 eVIDYA@IITD(ई - विद्या @IITD)下的在线证书课程:为印度和国际参与者提供推动青年进步@IITD 的虚拟和交互式学习。印度理工学院德里分校 (IIT Delhi) 提供的这些外展计划旨在满足国内外各种组织、行业、社会和个人参与者的培训和发展需求,其愿景是通过在前沿领域提供高质量的在线证书课程,为成千上万的年轻学习者提供帮助,帮助他们在工程、技术、科学、人文和管理等不同领域的职业发展。有关更多详情,请访问:http://cepqip.iitd.ac.in
高管教育是企业建立一种文化的迫切需要,这种文化可以促进新技术和解决方案的发展,并培养一支能够跟上技术、商业和监管领域快速变化需求的员工队伍。印度理工学院德里分校致力于让所有人都能接受优质教育,推出了 eVIDYA@IITD(ई - विद्या @IITD)下的在线证书课程:为印度和国际参与者提供推动青年进步@IITD 的虚拟和交互式学习。印度理工学院德里分校 (IIT Delhi) 提供的这些外展计划旨在满足国内外各种组织、行业、社会和个人参与者的培训和发展需求,其愿景是通过在前沿领域提供高质量的在线证书课程,为成千上万的年轻学习者提供帮助,帮助他们在工程、技术、科学、人文和管理等不同领域的职业发展。有关更多详情,请访问:http://cepqip.iitd.ac.in
表示芯片与环境之间的接触面。对于两种类型的 SMD 封装系列,可以使用两种类型的引线框架精加工:后镀和预镀。对于后镀系列(即裸铜/银点),电镀工艺是强制性的,以确保封装在印刷电路板 (PCB) 上的可焊性。对于预镀系列,由于多层精加工结构(例如 NiPdAu)可以跳过电镀工艺,从而保留封装在 PCB 上的可焊性,从而增强
基于氮化镓 (GaN) 的高电子迁移率晶体管 (HEMT) 技术正在彻底改变现代国防射频和电子战系统。该技术能够以高线性度和高效率在高频下提供高功率。由于这些优势,它被广泛应用于雷达、卫星通信和军事地面通信等各种应用中。基于 GaN 的 HEMT 技术比现有的砷化镓 (GaAs) 单片微波集成电路 (MMIC) 具有显著优势,尤其是在射频功率应用方面。这主要是因为 GaN 器件具有非常高的击穿场,因此能够在更高的电压下工作。此外,GaN 器件的阻抗要高得多,因此在射频功率放大器集成电路中对匹配网络的要求就更低了。总体而言,与竞争对手的射频相比,GaN 技术可以将射频 IC 的尺寸缩小十倍甚至更高
北卡罗来纳州达勒姆和德国恩斯多夫——2023 年 2 月 1 日——碳化硅技术的全球领导者 Wolfspeed, Inc. (NYSE: WOLF) 和推动下一代移动出行的全球技术公司 ZF 今天宣布建立战略合作伙伴关系,其中包括建立联合创新实验室,以推动用于移动出行、工业和能源应用的碳化硅系统和设备的进步。此次合作还包括 ZF 的一项重大投资,以支持在德国恩斯多夫建设全球最先进、最大的 200 毫米碳化硅设备工厂的计划。联合创新实验室和 Wolfspeed 设备工厂均作为欧洲共同利益重要项目 (IPCEI) 微电子和通信技术框架的一部分进行规划,并取决于欧盟委员会的国家援助批准。“这些举措是朝着成功的工业转型迈出的重要一步。 “它们增强了欧洲的供应弹性,同时支持了欧洲绿色协议和欧洲数字十年的战略目标,”ZF 首席执行官 Holger Klein 博士说。 Wolfspeed 和 ZF 合作建立碳化硅研发中心 该战略合作伙伴关系包括在德国设立一个联合研究机构,该机构将专注于现实世界的电动汽车和可再生能源系统级挑战。 合作的目标是为碳化硅系统、产品和应用开发突破性创新,涵盖从芯片到完整价值链的整个价值链