银河是一家专注于分立器件研发、制造和销售的IDM半导体公司,主要产品包括各类二极管、碳化硅、MOSFET、晶体管、模拟IC、光耦、LED等分立半导体器件,可为客户提供适用性强、可靠性高的系列产品和技术解决方案,满足客户一站式采购需求,产品广泛应用于电脑及周边设备、家用电器、适配器及电源、网络通讯、汽车电子、工业控制等诸多领域。
Mar 11, 2024 — 沉阳新松半导体设备有限公司成立于2023年,是一家专注于半导体晶圆传输专用设备的研. 发、生产、销售与技术服务的高新技术企业。公司前身为新松机器人自动化股份有限 ...
图表 9 : SiC 产业链及代表企业 ............................................................................................................................. 6 图表 10 : 导电型碳化硅衬底 ................................................................................................................................. 6 图表 11 : 半绝缘型碳化硅衬底 ............................................................................................................................. 6 图表 12 : WolfSpeed 公司导电碳化硅衬底演进过程 ........................................................................................... 7 图表 13 : SiC 衬底制作工艺流程 ........................................................................................................................... 8 图表 14 : PVT 法生长碳化硅晶体示意图 ............................................................................................................. 8 图表 15 : 用于制备碳化硅的籽晶 ......................................................................................................................... 8 图表 16 : CMP 过程示意图 ................................................................................................................................... 10 图表 17 : CVD 法制备碳化硅外延工艺流程 ........................................................................................................11 图表 18 : SiC 功率器件种类 ............................................................................................................................... 12 图表 19 : SiC-SBD 与 Si-SBD 比较 ..................................................................................................................... 13 图表 20 : SiC-SBD 正向特性 ............................................................................................................................... 13 图表 21 : SiC-SBD 温度及电流依赖性低 ........................................................................................................... 13 图表 22 : SiC-SBD 具有优异的 TRR 特性 ........................................................................................................... 13 图表 23 : SiC MOSFET 与 Si IGBT 开关损耗对比 .............................................................................................. 14 图表 24 : SiC MOSFET 与 Si IGBT 导通损耗对比 .............................................................................................. 14 图表 25 : SiC MOSFET 体二极管动态特性 ......................................................................................................... 14 图表 26 : N 沟道 SiC IGBT 制备技术图 ............................................................................................................. 15 图表 27 : SiC 行业发展阶段曲线 ....................................................................................................................... 16 图表 28 : SiC 市场规模现状及预测 ................................................................................................................... 17 图表 29 : 新能源汽车包含功率器件分布情况 .................................................................................................. 18 图表 30 : 对车载和非车载的器件要求 .............................................................................................................. 18 图表 31 : 车载 OBC 发展趋势 ............................................................................................................................. 19 图表 32 : 硅基材料功率器件的工作极限 ........................................................................................................... 19 图表 33 : 全球新能源汽车碳化硅 IGBT 市场规模 ............................................................................................ 19 图表 34 : 全球新能源汽车市场销量及增长率预测 ............................................................................................ 20 图表 35 : 中国新能源汽车市场销量及增长率预测 ............................................................................................ 20 图表 36 : 2020 年全球新能源乘用车车企销量 TOP10( 辆 ) ................................................................................ 21 图表 37 : 2020 年全球新能源乘用车车型销量 TOP10( 辆 ) ................................................................................ 21 图表 38 : 光伏碳化硅器件优越性 ....................................................................................................................... 22 图表 39 : 全球光伏需求预测 ............................................................................................................................... 22 图表 40 : 全球光伏碳化硅 IGBT 市场规模 ........................................................................................................ 23 图表 41 : 全球光伏 IGBT 市场规模 .................................................................................................................... 23 图表 42 : 2015-2021 年中国累计充电桩数量 ..................................................................................................... 24 图表 43 : 2015-2020 年中国车桩比例 ................................................................................................................. 24 图表 44 : 中国新能源汽车充电桩市场规模及预测 ............................................................................................ 25 图表 45 : 全球充电桩碳化硅器件市场规模 ....................................................................................................... 25 图表 46 : 全球轨道交通碳化硅市场规模及预测 ............................................................................................... 26 图表 47 : 2020 年全球轨道交通运营里程 TOP10 .............................................................................................. 26 图表 48 : 轨道交通碳化硅器件占比预测 ........................................................................................................... 27 图表 49 : 全球轨道交通碳化硅技术采用情况 ................................................................................................... 27 图表 50 : 2015-2025 年中国 UPS 市场规模及预测 ............................................................................................ 28 图表 51 : 2015-2021 年中国 UPS 器件类型情况 ................................................................................................ 28 图表 52 : 2011-2020 年全球 UPS 市场规模及预测 ............................................................................................ 29 图表 53 : 2019-2025 年全球 UPS 碳化硅器件市场规模 .................................................................................... 29 图表 54 : 国外碳化硅衬底技术进展 ................................................................................................................... 30 图表 55 : 碳化硅衬底尺寸市场占比演变 ........................................................................................................... 30
由于在高频和高功率固态微波电源设备中的巨大潜在应用,基于GAN的高电子迁移式晶体管(HEMTS)在过去的二十年中引起了很多关注,并且在实现市场商业化方面取得了巨大进展。为了进一步提高设备性能,尤其是在高压,高级材料和设备制造过程中,提出了新颖的设备结构和设计的高操作频率和设备可靠性。在提出的方法中,由于其独特的优质材料特性,基于Inaln的晶格匹配的异质结构可能成为下一个下摆的首选。在本文中,结合了III III化合物半导体材料和设备领域的相对研究工作,我们简要综述了基于Inaln基于Inaln的异质结构半导体组合的艺术状态的进展。基于对基于INALN的异质结构的外延生长的分析,我们讨论了提出的脉冲(表面反应增强)金属有机化学蒸气沉积(MOCVD)的优势和成就,用于INALN/GAN异质结构的外交。
SEGGER 的高性能实时操作系统 embOS-Ultra 也已支持 STM32C0 系列。它使用循环分辨率计 时,提供更高的精度和时间分辨率。使用 embOS-Ultra 可提高性能并节省功耗,它还为应用 程序提供了可同时使用基于周期和基于微秒的计时选项。 API 与 embOS 完全兼容,使迁移变 得简单,无需更改应用程序,并保持 embOS 行为。 embOS-Ultra 只是在使用新的附加 API 调 用时提供循环计时,不用在两者之间做出选择。了解 embOS-Ultra ,可以点击文章: embOS- Ultra :高分辨率系统时间
摘要 — 我们为氧化物半导体 (OS) 晶体管提供自上而下和自下而上的设计指南,这些晶体管针对逻辑平台上的增益单元存储器进行了优化。利用高密度、高带宽的片上增益单元存储器,通过最大限度地减少对片外动态随机存取存储器 (DRAM) 的访问,深度神经网络 (DNN) 加速器的执行时间可缩短 51-66%。为了平衡保留时间和存储器带宽(自上而下),选择原子层沉积 (ALD) 氧化铟锡 (ITO) 晶体管(自下而上)。经实验优化的器件表现出低关态电流(V GS = -0.5 V 时为 2 × 10 -18 A/µ m)、良好的导通电流(电源 < 2 V 时为 26.8 µ A/µ m)、低亚阈值摆幅 (SS)(70 mV/dec)和良好的迁移率(27 cm 2 V -1 s -1)。利用优化后的器件,在28nm节点、V DD = 0.9 V条件下模拟了一个64行(WL)×256列(BL)的增益单元存储器宏。模拟结果表明,混合OS-Si增益单元存储器实现了0.98倍频率和3倍静态随机存取存储器(SRAM)密度,而OS-OS增益单元存储器预计以N层3-D堆叠在0.5倍频率和N乘以1.15倍SRAM密度下工作。
4.1 程序存储器地址映射 ......................................................................................................4-2 4.2 程序计数器 ................................................................................................................4-4 4.3 从程序存储器访问数据 ..............................................................................................4-4 4.4 从数据空间可视程序空间 ............................................................................................4-8 4.5 程序存储器写入 ......................................................................................................4-10 4.6 相关应用笔记 .............................................................................................................4-11 4.7 版本历史 .............................................................................................................4-12
William Horrocks,OPTI 646 最终论文摘要。虽然量子信息科学在概念上与经典计算和理论有许多相似之处,但需要从头开始重新构想一些组件,才能有效地处理量子信息。“记忆”的概念,更具体地说,信息存储的构成就是这些概念之一。量子存储系统是众多对 NISQ 设备及其他设备的操作至关重要的系统之一。虽然量子存储器的基本功能类似于经典存储器,但量子状态下脆弱信息的细微差别需要仔细构建存储系统。在解决了量子存储器的基本功能之后,将介绍一个简单的实现,以进一步阐述要点。与传统计算类似,由于功能相似,多种设备都属于“存储器”的标签,但人们可以选择一些特征来优化其他特征,以最适合当前的情况。最后,我将以快速提及量子存储器协议和应用程序的一些有趣的最新发展来结束这篇评论。感兴趣的读者将根据需要参考文献。 1. 基本原理和功能 如前所述,量子存储器在功能上在概念上与经典存储器相似。一般来说,两者都负责记录所需信息并允许用户在稍后指定的时间访问。在非常简单的层面上,经典计算中的读写过程非常简单。要写入,外部系统输出一个二进制值零或一,该值被发送到经典存储器并被观察,并且存储器系统的一部分被更改以反映传入的值。类似地,读取操作可以被认为是逆操作;读取请求在指定时间触发,观察、复制存储器中的指定值并将其发送到所需位置。 在量子存储系统中,虽然中心思想相似,但量子信息所带来的挑战(主要是由于坍缩假设和不可克隆定理)要求谨慎处理存储问题。虽然期望很简单,但实现往往并非如此;必须在不改变系统的情况下“记录”未知的量子状态,并在用户定义的时间重现,同时避免直接干扰状态。由于量子信息的脆弱性,要高效完成这项工作相当困难。然而,正如量子力学提出挑战一样,巧妙地使用基本的量子光学概念可以提供多种解决方案。这些解决方案的复杂性最好通过一个例子来说明。2. 实验实现、性能参数和附加功能虽然它们都具有相似的功能,将量子记忆系统划分为不同的类别有助于使问题更容易处理。根据(Simon 等人,2010 年),量子记忆方案可以分为四个不同的类别:单光子记忆、一般状态记忆
量子控制是指具有所需精度为1的动态量子系统从初始目标或结果1。几种模拟控制波包及其应用的理论和实验方法对于为将来的仿真或量子计算方案铺平道路非常有用。在其中许多中,要控制的物理系统都是由外部电位驱动的,外部电位需要一直在体验中控制,直到达到目标为止。尽管在这项工作中我们没有声称提供量子控制的一般理论,但我们提供了一种新方法,其中控制方案一劳永逸地编码为其初始状态。这里的主要主角不是通用量子系统,而是在离散时间4 - 6中进行量子步行(QW)。鉴于此简单系统的公认多功能性,实际上似乎是一种特殊的选择,实际上具有巨大的潜力。实际上,QW是一种通用的计算模型7、8,它涵盖了大量的物理和生物学现象,与基本科学和应用都相关。应用程序包括搜索算法9 - 12和图形同构算法13,以建模和模拟量子14 - 18和经典动力学19,20。这些模型引发了各种理论调查,涵盖了数学,计算机科学,量子信息和统计力学领域的领域,并在任何物理维度21、22和几个拓扑结构中都定义了23 - 25。QW出现在多个变体中,可以在任意图上定义。本质上,这些简单的系统具有两个寄存器:一个用于图表上的位置,另一个是其内部状态,通常称为硬币状态。它在图表上以内部状态为条件,类似于经典案例,在每个步骤中,我们翻转硬币以确定步行者的方向。本质上的区别在于,在量子情况下,步行者在图表上以从节点开始的各个方向上传播。此功能允许量子步行器四四式探索图形的经典范围,该属性使设计非常有用,例如高效的搜索算法。但是,我们不知道控制量子步行者演变的许多方法。例如,我们可以选择初始条件和进化操作员来调整步行者的方差σ(t)= af(t),其中a是一个真实的预替代器,f(t)通常是t的线性函数。然而,一旦它们在初始时间固定,f和a均在整个演化中保持不变,除非我们不允许进化操作员在每个时间步长以既定方式更改,否则在26、27中,这可能是非常昂贵的。我们如何在不必更改进化操作员的情况下控制沃克的动态?是否可以控制只有初始条件,方差或平均轨迹?在本手稿中,我们认为,以引入量子记忆的代价,答案是肯定的。带有内存的量子步行已经进行了研究,并有几种变体28、29。举例来说,这些修改的量子步行可能会有额外的硬币来记录沃克的最新路径,如30,31。在这里,这个想法是为网格中的每个位点定义一个额外的量子,步行者在整个演化过程中与之相互作用。令人惊讶的是,我们将证明整个系统的初始条件,内存 + Walker,足以控制步行者的方差和均匀位置。兴趣是双重的:从一方面,我们提供了一个简单的分布式量子计算模型,以控制单个量子沿其动力学,这将不需要我们控制和调整
ROM 的类型 顾名思义,只读存储器 (ROM) 包含不可更改的永久数据模式。ROM 是非易失性的;也就是说,无需电源即可保持存储器中的位值。 可编程 ROM (PROM) 与 ROM 一样,PROM 也是非易失性的,只能写入一次。对于 PROM,写入过程以电气方式执行,可以由供应商或客户在原始芯片制造之后的某个时间执行。 光可擦除可编程只读存储器 (EPROM) 和 PROM 一样,以电气方式读取和写入。但是,在写入操作之前,必须通过将封装芯片暴露在紫外线下将所有存储单元擦除为相同的初始状态。 更有吸引力的主要读存储器形式是电可擦除可编程只读存储器 (EEPROM)。这是一种主要读存储器,可以随时写入而不会擦除之前的内容;只更新寻址的字节或字节。写入操作比读取操作花费的时间长得多,大约为每字节几百微秒。另一种半导体存储器是闪存(因其重新编程速度快而得名)。闪存于 20 世纪 80 年代中期首次推出,在成本和功能上介于 EPROM 和 EEPROM 之间。与 EEPROM 一样,闪存使用电擦除技术。一整块闪存可以在一秒或几秒内被擦除,这比 EPROM 快得多。