对于四倍体柳枝稷,我们将单倍体定义为两个亚基因组的基因组拷贝丢失。双单倍体技术需要有效的 2n 诱导系统以及随后的基因组加倍,并将提供新的育种机会,例如为商业杂交生产系统选择高性能自交系。不同柳枝稷亚种群的杂合亲本之间的杂交可产生生物量产量的杂种优势(Bhandari 等人,2017 年;Martinez-Reyna 和 Vogel,2008 年;Vogel 和 Mitchell,2008 年)。然而,由于柳枝稷中活跃的遗传不相容系统以及在获得的相对较少的自交基因型中可能发生的近交衰退和不育,自交系尚未开发。如果有更好的自交系,开发高产单交杂交种将是一种可选的育种方法。由于自交系的性能通常与其杂交种的性能相关,因此选择高产自交系可能具有优势(Hayes & Johnson,1939;Sprague,1977)。此外,DH 技术将促进所需性状、外来基因、转基因、染色体片段或整个染色体的渗入和稳定(Devaux & Pickering,2005;Forster & Thomas,2005)。
在 Linux 和 Windows 下执行群体遗传学分析的程序。分子生态资源,10 (3),564–567。https://doi. org/10.1111/j.1755-0998.2010.02847.x FAO。(2015 年)。在 BD Scherf 和 D. Pilling(编辑)中,《世界粮食和农业动物遗传资源状况第二份报告》(606 页)。粮农组织粮食和农业遗传资源评估委员会。https://doi.org/10.4060/I4787E Fu, YX (1997)。突变中性对种群增长、搭便车和背景选择的统计检验。遗传学,147 (2),915–925。 https://doi.org/10.1093/genetics/147.2.915 Gasigwa Sabimana, R.、Baenyi Simon, P. 和 Kizungu Vumilia, R. (2017)。
摘要:气候变化的新威胁要求快速开发对非生物和生物因素具有更高耐受性的优良品种。尽管传统农业实践取得了成功,但仍需要精确操纵作物基因组的新技术。几十年来,双单倍体 (DH) 方法已在主要作物中使用,以在短时间内在优良背景中固定所需的等位基因。DH 植物还广泛用于数量性状基因座 (QTL) 的定位、标记辅助选择 (MAS)、基因组选择 (GS) 和杂交生产。最近发现的负责单倍体诱导 (HI) 的基因允许通过基因编辑 (GE) 在不同作物的非诱导品种中设计这种性状。直接编辑配子或单倍体胚胎可在染色体加倍后产生无效纯合植物,从而提高 GE 效率。对单倍体植物中负责自发染色体加倍的潜在遗传机制的深入了解可能允许将这种性状转移到不同的优良品种中。总体而言,进一步提高 DH 技术效率并结合优化的 GE 可以加速主要作物的育种工作。
摘要:在过去的四十年中,双倍的双倍体在库瑟育种中发挥了重要作用。通过辐照花粉的原位孤立生成是获得单倍倍体的首选技术,然后在葫芦科中将其染色体倍增,例如瓜,黄瓜,南瓜,南瓜和冬南瓜。与其他物种中的单倍体过程加倍相反,库班的原位孤立生成提出了许多限制因素,这些因素阻碍了单倍体的有效产生。此外,这是非常耗时的和劳动力密集的。但是,单倍体诱导者介导的基因组编辑系统是一种可产生双倍双倍体的突破性技术。使用CRISPR / CAS9系统中的几份报告描述了库糖库物种,尽管其应用具有许多瓶颈,但CENH3基因的靶向敲除将允许育种者获得可用于获得多倍性诱导剂线,以获得py源性胚胎。在这篇综述中,我们讨论了使用CURSPR / CAS9技术在葫芦物种中的双倍单倍体和单倍体诱导剂基因型的发展方面取得的进展。本综述为应用单倍体诱导剂介导的基因组编辑系统的应用提供了见解
手稿:所有共同作者玛丽亚·格拉西亚·朗卡罗洛(Maria Grazia Roncarolo)手稿写作:沃尔克·威伯金(Volker Wiebking),马修·波特斯(Matthew Porteus)评论Wiebking,Matthew Porteus,Alice Bentaira监督:爱丽丝·伯恩塔(Alice Bentausis):爱丽丝·贝纳塔(Alice Bnateis):爱丽丝·伯恩塔(Alice Berainda),马修·托尔特(Matthew) Nathalie Mostrel Off-target analysis: Ciaran M. Lee and Gang Bao Data Matthew Porteus In vitro studies: Volker Wiebking, Premanjali Lahiri In vivo studies: Volker Conception and design: Volker Wiebking, Rasmus Bak, Alice Bertaina and Contributions:
1 美国加利福尼亚州斯坦福大学医学院儿科系;2 美国德克萨斯州休斯顿莱斯大学生物工程系;3 美国加利福尼亚州斯坦福大学医学院细胞与基因医学实验室;4 丹麦奥胡斯大学生物医学系;5 丹麦奥胡斯大学奥胡斯高等研究院 (AIAS) 和 6 美国加利福尼亚州斯坦福大学干细胞生物学与再生医学研究所。
稀有变异难以检测是传统全基因组关联研究 (GWAS) 面临的问题之一。这一问题与单倍型等由多个等位基因组成的复杂基因组成密切相关。为解决这一问题,已提出了多种单核苷酸多态性 (SNP) 集方法。但这些方法很少与单倍型相关讨论。在本研究中,我们开发了一种新的 SNP 集方法“RAINBOW”,并将该方法应用于基于单倍型的 GWAS,将单倍型块视为 SNP 集。结合单倍型块估计和 SNP 集 GWAS,可在无需先前单倍型信息的情况下进行基于单倍型的 GWAS。我们准备了 100 组稻 (Oryza sativa subsp.) 的模拟表型数据和真实标记基因型数据集。 indica,并对数据集进行 GWAS。我们比较了我们的方法、传统的单 SNP GWAS、传统的基于单倍型的 GWAS 以及传统的 SNP 集 GWAS 的功效。结果显示我们的方法在三个方面优于这些方法:(1)控制假阳性;(2)如果数据集中对因果变异进行了基因分型,则可以不依赖连锁不平衡来检测因果变异;(3)它显示出比其他方法更高的功效,即它能够检测到其他方法未能检测到的因果变异,主要是当因果变异位置非常接近且其作用方向相反时。通过在本研究中使用 SNP 集方法,我们期望不仅可以检测出罕见变异,还可以检测出具有复杂机制的基因,例如具有多个因果变异的基因。 RAINBOW 是作为名为“RAINBOWR”的 R 包实现的,可从 CRAN(https://cran.r-project.org/web/packages/RAINBOWR/index.html)和 GitHub(https://github.com/KosukeHamazaki/RAINBOWR)获取。
摘要:古基因组分析的标准做法是将映射的短读数据转换为伪单倍体序列,通常是从映射读堆栈中随机选择一个高质量的核苷酸。这可以控制由于差异测序覆盖率而导致的偏差,但不能控制差异率和测序错误类型,这些错误在从古代样本获得的数据集中通常很大且多变。这些错误可能会扭曲系统发育和种群聚类分析,并误导使用 D 统计量的混合测试。我们介绍了一种生成伪单倍体序列的方法 Consensify,它可以控制由差异测序覆盖率导致的偏差,同时大大降低错误率。错误校正直接来自数据本身,无需额外的基因组资源或简化假设(例如同时采样)。对于系统发育和种群聚类分析,我们发现与基于单读采样的方法相比,Consensify 受人工制品的影响较小。对于 D 统计量,Consensify 对假阳性的抵抗力更强,并且与其他常用方法相比,不同实验室协议导致的偏差似乎影响较小。尽管 Consensify 是针对古基因组数据开发的,但它适用于任何低到中等覆盖率的短读数据集。我们预测,Consensify 将成为未来古基因组研究的有用工具。
对其起源知之甚少,但du toit(Zoe。cit。)和La·Wrence(1946)建议它可能已经从北部引入了南部非洲。关于传输方式的当前知识以及向量的喂养习惯,条纹腿的tick hyalomma transiens,使这一建议合理。感染性tick虫本可以被哺乳动物和鸟类在广阔的地区传播。这将很清楚,如果人们认为两个宿主hyalomma spp的未成熟阶段。经常在候鸟上遇到。Schulze(1930)记录了透明的MMA若虫从埃及引入斯堪的纳维亚半岛,而Enigk(1944)则观察到从亚热带地区向德国的此类壁虱的年度介绍。因此,可以想象的是,候鸟可以将感染性H. transiens的未成熟阶段带入南部非洲。