如果所有提议的星座都得以实现,那么在轨卫星数量将增加 40 倍。(截至 2022 年 3 月,轨道上有约 5000 颗卫星)。有行业分析师有衡量任何给定星座实现可能性的指标,所以我不会在这里重新发明轮子。(好奇的读者应该查看 Quilty Analytics [17]、NSR [18] 或 Pierre Lionnet [19] 等太空经济学家的作品,了解他们的启发式和排名。)我们不要关注可能性,而是回顾正在进行的结果。Starlink 已经部署了原计划的 4408 星座的近一半,OneWeb 已经部署了其原始星座的 2/3(但不幸的是,由于俄罗斯与乌克兰的持续战争期间 Roscosmos 拒绝提供联盟号运载火箭,他们失去了机会),而 Kuiper 项目已经获得了 ULA 的九枚 Atlas V 火箭用于其第一阶段的部署(很可能
摘要 — 卫星通信提供了在未覆盖和覆盖不足的区域提供服务连续性、服务无处不在和服务可扩展性的前景。然而,要实现这些好处,必须首先解决几个挑战,因为卫星网络的资源管理、网络控制、网络安全、频谱管理和能源使用比地面网络更具挑战性。同时,人工智能 (AI),包括机器学习、深度学习和强化学习,作为一个研究领域一直在稳步发展,并在包括无线通信在内的各种应用中取得了成功的结果。特别是,人工智能在各种卫星通信方面的应用已经显示出巨大的潜力,包括波束跳跃、抗干扰、网络流量预测、信道建模、遥测挖掘、电离层闪烁检测、干扰管理、遥感、行为建模、天空地一体化和能源管理。因此,本文概述了人工智能、其各种子领域及其最新算法。然后讨论了卫星通信系统各个方面面临的若干挑战,并介绍了基于人工智能的拟议和潜在解决方案。最后,对该领域进行了展望,并提出了未来的步骤。
卫星通信 (SatCom) 尤其可以提供近乎即时的语音和数据连接,而商用 SatCom 选项,例如宽带全球区域网络 (BGAN) 或甚小孔径终端 (VSAT),可以快速部署以提供连接,支持从单个用户访问电子邮件到小型指挥中心等一系列需求。卫星的独特功能非常适合在灾难响应期间填补某些通信空白。在受灾地区,由于基础设施缺乏或退化,卫星可能是唯一的通信方式。但是,传统的网络协议难以有效利用卫星容量。没有“灵丹妙药”来提供连接,成功的实施通常是针对特定场景的混合解决方案。
摘要 地球观测低地球轨道 (LEO) 卫星收集大量数据,这些数据需要先传输到地面站,然后再传输到云端进行存储和处理。如今,卫星会贪婪地向地面站传输数据,每次接触期间都会充分利用带宽。我们表明,由于地面站的布局和轨道特性,这种方法会使某些地面站超载而其他地面站负载不足,从而导致吞吐量损失和图像的端到端延迟较大。我们提出了一种名为 Umbra 的新型端到端调度系统,该系统通过考虑空间和时间因素(即轨道动态、带宽限制和队列大小)来规划从大型卫星星座通过地面站到云端的传输。Umbra 的核心是一类称为保留调度的新型调度算法,其中发送方(即卫星)有选择地未充分利用一些与地面站的链路。我们表明,Umbra 的反直觉方法可将吞吐量提高 13-31% 并将 P90 延迟降低 3-6 倍。
突出特点:• 加密协议的安全性基于量子物理定律,而不是计算复杂性理论未经证实的假设。• 量子密码术或量子密钥分发 (QKD) 提供了传统密码手段无法获得的通信安全性。• 安全量子通信的紧迫性源于人们对量子计算威胁的认知,量子计算正在吸引来自行业和政府的巨额投资。
ITU-R SG 4 目前正在研究的一个主题是将卫星通信融入 5G 生态系统,而不是在会议进程之外。正如宽带可持续发展委员会 2018 年 9 月发布的“2018 年宽带状况:宽带促进可持续发展”报告中指出的那样,“卫星技术还可以帮助缓解网络拥塞和超载。未来,它将支持 5G,并确保在地面网络不可用的时间或区域实现连接。” 因此,现在必须进行必要的研究,以确保卫星通信与地面系统集成,为最终用户提供无缝体验。
卫星通信 (SATCOM) 系统正在经历多项技术变革,传统设计方法正转向更高的频率和更宽的带宽。新技术正在发挥作用,例如 GaN 放大器,它大大改善了 SWaP,并提高了效率和可靠性。不同的天线技术也极大地影响了系统的设计,包括相控阵、超材料和 3D 打印天线。5G 和物联网服务的推出也影响了 SATCOM 市场,因为各公司正在寻找方法利用这些市场的星座作为商业增长的机会。新太空市场的增长也影响了需要低成本、更小尺寸和更轻重量的设计,尤其是对于小型卫星而言。