为了在现实世界中部署强化学习(RL)代理,它们必须能够推广到看不见的环境。但是,RL在分布外的概括方面挣扎,通常是由于过度拟合培训环境的细节。尽管可以应用监督学习的正则化技术来避免过度插入,但超级学习和RL之间的差异限制了其应用。为了解决这个问题,我们提出了RL的信噪比调节的参数不确定性网络(SNR PUN)。我们将SNR作为正规化网络的参数定向的新量度,并提供了正式分析,解释了SNR正则为什么对RL效果很好。我们证明了我们提出的方法在几个模拟环境中概括的有效性;在一个物理系统中,显示了使用SNR PUN将RL应用于现实世界应用程序的可能性。
图3。径向极化的QD激光是从杂种W TM -SLR纳米腔实现的。(a)在线性尺度上针对不同输入泵脉冲能的正常检测角度收集的发射光谱。插图:输出发射强度是对数字尺度上输入泵脉冲能量的函数。(b)激光发射光束的远场图案。白色箭头显示输出激光模式的极化方向。(c)在选定的极化方向下的光束轮廓。白色箭头在检测器前显示线性偏振器的偏振方向。(d)在p偏振光下的小波vector上模拟带结构。黑色圆圈指示k x = 0的w tm -slr模式。红色圆圈表示在非零K x处的W TM -SLR边带。(E)在W TM -SLR边带处模拟电场(| E | 2,单位为V 2 /M 2)。在模拟中将入射光E 0的电场设置为1 V/m。
方法:回顾性纳入了 62 名接受 FDOPA PET 和 MRI 检查的未接受治疗的胶质瘤患者。对比增强 T1 加权图像、T2 加权图像、液体衰减反转恢复图像、表观扩散系数图和相对脑血容量图以及 FDOPA PET 图像用于体素特征提取。使用无监督两级聚类方法,包括自组织映射和 K 均值算法,并将每个类标签应用于原始图像。将肿瘤区域内每个类的标签对数比应用于支持向量机以区分 IDH 突变状态。计算受试者工作特征曲线的曲线下面积 (AUC)、准确度和 F1-socore,并将其用作性能指标。
此外,并非所有对AI透明度的担忧都是如此之高。有些担忧也更加脚踏实地。认为AI威胁要加剧当前歧视的人。担心,不透明的AI产生了促进种族主义,性别歧视和其他形式歧视的新方法,以及隐藏这种歧视的新方法。人类将继续以可预测的方式成为种族主义。这将部分归因于不透明的过程,这些过程指导了人类如何做出决定。,但是AI将创造新的种族主义方式。,它将创造新的方式来掩盖种族主义。这将是由于指导AI做出决定的不透明过程。AI可能与人类一样透明,理由是作出决定的原因。,但它的不透明性隐藏了支持和维持人类不透明度不存在的偏见的新方法。解决不透明人工智能中种族偏见的担忧,ZKMG(2019年,第673页)说:
分化的甲状腺癌(DTC)(1)包括乳头状甲状腺癌(PTC),卵泡甲状腺癌(FTC)及其变异亚型(2),是最常见的内分泌恶性肿瘤,并且最近几年的发病率迅速增加。DTC通常具有良好的预后,碘131治疗和甲状腺抑制剂已被证明对10年生存率的患者有益,范围为80%至95%(3,4)。然而,大约5%-20%的病例可能由于基因突变引起的肿瘤生物学变异,导致不同的亚型和预后不良,这可能与高度浸润性肿瘤的生物学特征有关(5)。因此,甲状腺结节的鉴别诊断仍然很明显。对比增强超声(CEU)可以实时评估组织的微循环灌注(6),提供准确可靠的数据,并且可以避免由个体差异引起的诊断错误(7)。由于甲状腺正常组织中的微容器的丰度,它显示出造影剂后的快速和均匀增强。然而,甲状腺结节具有不同的血管生成模式,并且CEUS上的表现可能不同(8)。先前的研究报道了甲状腺结节的CEUS特征,但是,大多数是基于结节内部(9-11),而CEUS上甲状腺结节的增强模式仍然没有足够的能力来诊断甲状腺癌(12)。到目前为止,只有一项研究重点介绍了结节周围区的CEU特征(13)。这项研究的目的是通过研究甲状腺结节的内部和外围区域的定性和定量参数来评估CEU在DTC的鉴别诊断中的价值。
急性肾脏损伤(AKI)是一种危重疾病,死亡率很高,并且经常发展为慢性肾脏疾病,而没有特定原因治疗。了解其机制对于识别生物标志物和开发靶向疗法至关重要。特别是,在许多疾病模型中都研究了基因治疗,包括siRNA,特别是通过免费序列沉默的靶基因,其中一些药物/方法正在临床试验中。但是,将基因改良剂传递到所需细胞已被证明非常具有挑战性。本期“急性肾脏损伤:分子机制和有针对性的治疗方法”,邀请了有关AKI病理生理学,生物标志物和治疗策略的研究和审查文章。我们欢迎对临床前研究和旨在改善肾脏疾病结局并提高精确医学的贡献。
https://rebiunoda.proznet.clading:344.Cogologic/c2fumbic/c2f0uf0
Thierry Tran,FrançoisVerdier,Antoine Martin,HervéAlexandre,Cosette Grandvalet等。食品微生物学,2022,105,pp.104024。10.1016/j.fm.2022.104024。hal-03648386
几次学习(FSL)的目的是学习如何从少数培训检查中认可图像类别。一个核心挑战是,可用的培训检查通常不足以确定哪些视觉效果是所考虑类别中最具特征的。为了应对这一挑战,我们将这些视觉特征组织成方面,从直观地将相同的特征分组(例如,与形状,颜色或纹理相关的功能)。这是从以下假设中的动机:(i)每个方面的重要性因类别而异,并且(ii)可以从类别名称的预训练的嵌入中预测Facet的重要性。尤其是我们提出了一种自适应的相似性度量,依靠对给定类别的预测的重要性权重。该措施可以与各种现有的基于度量的甲基甲化组合使用。在迷你胶原和CUB上进行的实验表明,我们的方法改善了基于公制的FSL的最新方法。
