RecA/Rad51家族蛋白诱导的DNA结构的内在动态特性:DNA作为基因组材料可能比RNA更具优势”。美国国家科学院院刊98.15(2001):8425-8432。
摘要 背景 调节性 T 细胞 (Treg) 谱系由转录因子 FOXP3 定义,它控制免疫抑制基因表达谱。Treg 通常以高频率被招募到肿瘤微环境中,在那里它们可以抑制抗肿瘤免疫力。我们假设,通过系统递送的未配制的受限乙基修饰反义寡核苷酸对 FOXP3 进行药理学抑制可以调节 Treg 的活性并增强抗肿瘤免疫力,从而在癌症模型中并可能在人类中提供治疗益处。方法 我们已经确定了鼠 Foxp3 反义寡核苷酸 (ASO) 和临床候选人类 FOXP3 ASO AZD8701。在培养的 Treg 和小鼠同基因肿瘤模型中测试了 FOXP3 抑制剂对 Treg 功能和抗肿瘤免疫的药理学和生物学效应。实验由载体和非靶向对照 ASO 组以及使用多个独立的 FOXP3 ASO 进行控制。通过单因素或双向方差分析和多重比较来评估生物学效应的统计学意义。结果 AZD8701 在临床相关剂量下在人源化小鼠中表现出剂量依赖性地敲低原代 Treg 中的 FOXP3、降低抑制功能和有效下调靶标。替代鼠 FOXP3 ASO 可有效下调原代 Treg 中的 Foxp3 信使 RNA 和蛋白质水平,并在体外免疫抑制试验中降低 Treg 抑制功能。FOXP3 ASO 在体外和体内使 Treg 中的 FOXP3 水平降低 70% 以上,强烈调节 Treg 效应分子(例如 ICOS、CTLA-4、CD25 和 4-1BB),增强 CD8 + T 细胞活化并在同基因肿瘤模型中产生抗肿瘤活性。FOXP3 ASO 与免疫检查点阻断的结合进一步增强了抗肿瘤功效。结论 FOXP3 反义抑制剂提供了一种有前途的新型癌症免疫治疗方法。AZD8701 正在作为同类首创药物进行临床开发
强直性肌营养不良症,或 1 型强直性肌营养不良症 (DM1),是一种多系统性疾病,是成人最常见的肌营养不良症。它不仅影响肌肉,还影响许多器官,包括大脑。脑损伤包括认知缺陷、白天嗜睡以及视觉空间和记忆功能丧失。具有 CUG 重复的突变转录本的表达导致毒性 mRNA 功能的增强。反义寡核苷酸 (ASO) 策略治疗 DM1 脑缺陷的局限性在于 ASO 在全身给药后不会穿过血脑屏障,这表明应考虑其他给药方法。ASO 技术已成为开发多种人类疾病潜在新疗法的有力工具,其潜力已在最近的临床试验中得到证实。使用 IONIS 486178 ASO 靶向来自 DM1 患者人类诱导性多能干细胞的神经细胞中的 DMPK mRNA,可消除 CUG 扩增灶,实现 MBNL1/2 的核重新分布,并纠正异常剪接。在 DMSXL 小鼠脑室内注射 IONIS 486178 ASO 可使不同脑区中突变型 DMPK mRNA 的水平降低高达 70%。它还可逆转新生儿给药后的行为异常。本研究表明,IONIS 486178 ASO 靶向脑中的突变型 DMPK mRNA,并强烈支持基于鞘内注射 ASO 治疗 DM1 患者的可行性。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 1 月 9 日发布。;https://doi.org/10.1101/2021.01.08.426005 doi:bioRxiv preprint
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印版的版权持有人于2021年1月13日发布。 https://doi.org/10.1101/2021.01.08.426005 doi:biorxiv preprint
目的淀粉样变性运甲状腺素蛋白 (ATTR) 淀粉样变性是一种以进行性心肌病和/或多发性神经病为特征的致命疾病。AKCEA-TTR-L Rx (ION- 682884) 是一种配体结合的反义药物,旨在通过受体介导肝细胞(循环运甲状腺素蛋白 (TTR) 的主要来源)的摄取。反义药效团的增强递送有望提高药物效力并支持更低、更少频率的治疗给药。方法和结果与未结合的反义药物 inotersen 相比,AKCEA-TTR-L Rx 在人肝细胞培养物和表达突变的人类基因组 TTR 序列的小鼠中的效力分别提高了约 50 倍和 30 倍。这种效力的增加是由转基因 hTTR 小鼠模型中 AKCEA-TTR-L Rx 优先分布到肝脏细胞所支持的。进行了一项随机、安慰剂对照的 1 期研究,以评估健康志愿者中的 AKCEA-TTR-L Rx(ClinicalTrials.gov:NCT 03728634)。符合条件的参与者被分配到三个多剂量组(45、60 和 90 毫克)之一或一个单剂量组(120 毫克),然后随机分配 10:2(活性药物:安慰剂)在多剂量组中总共接受 4 次 SC 剂量(第 1、29、57 和 85 天)或在单剂量组中接受 1 次 SC 剂量。主要终点是安全性和耐受性;药代动力学和药效学是次要终点。所有随机参与者均完成治疗。未报告严重不良事件。在多剂量组中,AKCEA-TTR-L Rx 将 TTR 水平从基线降低至服用最后一剂 45、60 或 90 mg 后 2 周,平均值(SD)分别为 85.7%(8.0)、90.5%(7.4)和 93.8%(3.4),而合并安慰剂为 5.9%(14.0)(P < 0.001)。单剂量 120 mg AKCEA-TTR-L Rx 后,TTR 水平最大平均(SD)降低量为基线的 86.3%(6.5)。结论这些发现表明,通过肝细胞对 AKCEA-TTR-L Rx 的有效受体介导摄取,其药效得到提高,安全性和耐受性得到改善,并支持进一步开发 AKCEA-TTR-L Rx 用于治疗 ATTR 多发性神经病和心肌病。
尽管迄今为止已描述了数百种 RNA 修饰,但只有 RNA 编辑会导致 RNA 分子的核苷酸序列与基因组相比发生变化。在哺乳动物中,迄今为止已描述了两种 RNA 编辑,即腺苷到肌苷 (A-to-I) 编辑和胞苷到尿苷 (C-to-U) 编辑。RNA 测序技术的最新改进导致发现越来越多的编辑位点。这些方法功能强大但并非没有错误,因此必须对新描述的编辑位点进行常规验证。在对 DDX58 mRNA 进行其中一次验证时,除了 A-to-I RNA 编辑位点外,我们还遇到了假定的 U-to-C 编辑。这些 U-to-C 编辑存在于几种细胞系中,并且似乎受到特定环境刺激的调节。在人类长基因间非编码 RNA p21 (hLincRNA- p21) 中也观察到了同样的发现。更深入的分析表明,假定的 U-to-C 编辑是由从相同基因座转录的重叠反义 RNA 上的 A-to-I 编辑引起的。此类编辑事件发生在以相反方向转录的重叠基因上,最近已被证明具有免疫原性,并与自身免疫和免疫相关疾病有关。我们的发现也得到了深度转录组数据的证实,表明此类基因座可以通过同一基因座内 A-to-I 和 U-to-C 错配的存在来识别,在正义转录本和顺式天然反义转录本 (cis-NAT) 中都存在反射性 A-to-I 编辑,这意味着此类簇可能是功能相关的 ADAR1 编辑事件的标志。
Donidalorsen 是一种新型药物,是一种基于 RNA 的疗法,被归类为反义寡核苷酸 (ASO),具有固有优势。这些优势包括无交叉诱变风险、瞬时效应、易于开发和制造以及成本效益。5 与 donidalorsen 一起使用的 GalNAc 3 结合策略可将效力提高至未结合反义寡核苷酸的 30 倍。这一发现支持使用较低剂量和较低频率的给药(每月一次),从而减少全身暴露,并具有良好的安全性。3,6 选择性抑制血浆前激肽释放酶的产生被认为可以减少 HAE 发作的频率和疾病负担。3 如果获得许可,donidalorsen 将为患有 HAE 的青少年和成年患者提供额外的预防性治疗选择。
营养不良的表皮溶解Bullosa(DEB)是一种由编码胶原蛋白VII的基因Col7a1突变引起的泡沫皮肤疾病。deb可以作为隐性deb(rdeb)或主导DEB(DDEB)遗传,并与高伤口负担相关。在DDEB和RDEB中的伤口和愈合的永久循环以及肿瘤腐蚀的微环境的形成。通过提高伤口愈合的质量来延长无伤口的发作,将为DEB的个体带来可观的好处。胶原蛋白VII的胶原域由82个框架外显子编码,这使得剪接调节疗法对DEB有吸引力。的确,反义寡核苷酸E的外显子跳过已经显示出对RDEB的希望。然而,反义寡核苷酸对DDEB的治疗的适用性仍未得到探索。在这里,我们开发了QR-313,这是一种适用的,有效的反义寡核苷酸特定靶向外显子73。我们显示了QR-313局部递送在Carbomer组成的凝胶中的可行性,用于治疗伤口,以恢复人类RDEB皮肤中胶原蛋白的丰度。我们的数据表明,QR-313还显示了外显子73突变引起的DDEB的直接益处。因此,可以使用相同的局部应用治疗方法来改善RDEB和DDEB中的伤口愈合质量。
• 预计在 3-5 年内获得第一批结果 • 使用反义分子特异性抑制生殖细胞发育导致不育 • 直接应用于生产用蛋 • 正常发育和生产条件 • 方法正在开发中 • 监管环境不确定