摘要:确定水质质量的非常重要的作用是评估其微生物生物学质量。在水处理厂,自来水或游泳池中的水上生产的水,可能会对人类健康和生命构成直接威胁。但是,这些用于评估其质量的传统方法是费力且耗时的。在紧急情况和偶然情况下,在恐怖威胁时代,需要快速,可靠和可重复的微生物学确定的需求似乎是必不可少的。在这项研究中,试图比较评估水的微生物质量的各种方法。对具有不同微生物特征的水进行评估:地表水,雨水,地下水和供水。使用传统的培养方法和高速方法进行评估:流量细胞仪和发光法。微生物参数的分析是统计分析的基础。对各种水的微生物学分析以及它们的统计评估显示出对每个分析水域的不同依赖性。
在这项研究中还研究了吸收和X(UV)射线激发发光特征。Yb 3+的电荷转移发光显示了最大值在345 nm和515nm处的双峰光谱,这拟合了所需的能量差约10000 cm“ 1” 1来自2 fs/2和2¥〜m yb的分离。激发光谱(em。= 350 nm)是圆形240 nm的峰值,这与观察到的吸收光谱是一致的。在360 nm处测得的80 K发光衰减显示了30 ns的主要衰减时间,而在室温下,由于发光猝灭,它缩短至0.8 ns。
摘要 摩擦发光 (TL) 是一种由冲击、应力、断裂或施加的机械力引起的发光现象。这种现象可用于检测、评估和预测复合材料的机械故障。在本报告中,我们利用锰掺杂的硫化锌 (ZnS: Mn) 和聚苯乙烯 (PS) 复合材料通过增材制造技术制造了 TL 功能部件。利用扫描电子显微镜和微型 CT 扫描研究了聚合物基质内颗粒的形貌。采用差示扫描量热法 (DSC) 和热重分析 (TGA) 等热分析技术来评估复合材料的热转变和降解。通过三点弯曲试验评估打印样品的机械发光性能,并观察其取决于可用于在不同机械载荷下实现强光信号的加工条件。聚合物复合材料的制造和加工减小了颗粒尺寸,增强了颗粒分散性,并改变了聚合物的机械性能,有助于将 3D 打印部件中的机械发光响应提高 10 倍。3D 打印发光复合材料的独特机械发光特性在结构监测应用方面具有巨大潜力。
使用光学信号摘要来实现应变信号的传感是触觉传感器的有希望的应用。但是,大多数研究现在都集中在Piezophotronic LED阵列上,这些LED阵列很难纳入基于SI的半导体行业。由于SI间接带隙引起的基于SI的设备的光电性能不佳,因此使用SI构造高密度发光设备一直是一件具有挑战性的。在这里,设计和制造了由P-SI微柱组成的基于SI的量子点发光装置(QLED)阵列,并研究了SI中应变偶联效应对基于SI基QLEDS的电致发光性能的机制。QD的引入很容易提供有效且可调节的光发射,并满足不同实际应用的要求。QLED的发射强度取决于注入的电流密度,并且可以通过应变耦合效应调节载体的运输过程。基于SI的光子设备与压力传感的组合可能会对电子皮肤和人类机器界面的领域产生重大影响。更重要的是,这项技术与主要基于SI的半导体行业完全兼容。因此,它在实现大规模的光子设备并扩展其应用程序场的整合方面表现出了希望。
原子层沉积 (ALD) 是微电子行业广泛采用的先进气相薄膜制造技术,用于晶体管和显示器等应用。25 在 ALD 中,不同的气态/汽化金属和共反应物前体被顺序脉冲输入反应腔,每个前体脉冲之后都进行惰性气体吹扫步骤,以在发生所需的表面反应后去除多余的前体分子。由于这些化学表面反应的自限性,ALD 可提供无针孔、高度均匀且保形的薄膜,并可在原子级厚度控制。用于有机薄膜的 ALD 对应方法也是最近才开发的,这种方法称为分子层沉积 (MLD)。26 MLD 采用纯有机气态/汽化前体。最重要的是,ALD 和 MLD 都是模块化的,这意味着为了沉积高质量的金属有机薄膜,可以结合使用 ALD 和 MLD 前体脉冲。 27,28 这种目前蓬勃发展的混合 ALD/MLD 技术已被用于制造数十种新型金属有机薄膜材料,这些材料表现出的有趣功能特性远远超出了纯无机或有机薄膜所能实现的功能特性。29 例如,ALD/MLD 生长的金属有机薄膜的机械性能通常比 ALD 生长的无机薄膜高出几个数量级,这在柔性电子应用等领域非常重要。30,31
有机发光二极管 (OLED) 具有高效率、低功耗和灵活性等突出优势,在显示、照明和近红外 (NIR) 应用方面有着巨大的潜力。最近发现,超薄发光纳米层技术在通过非掺杂制备工艺简化结构的 OLED 中起着关键作用,而激基复合物形成主体可以提高 OLED 的效率和稳定性。然而,超薄发光纳米层在界面激基复合物内能量传递过程的基本结构和机理仍不清楚。因此,迫切需要探索超薄发光纳米层的起源及其在激基复合物内的能量过程。本文对超薄发光纳米层( < 1 nm)的薄膜生长机理及其在界面激基复合物内的能量传递过程进行了综述和研究。 UEML磷光染料在决定激基复合物和非激基复合物界面之间激子的寿命方面起着关键作用。TCTA和Bphen之间的激基复合物比TCTA和TAPC之间的非激基复合物具有更长的寿命衰减,有利于激子的收集。该发现不仅有利于OLED的进一步发展,也有利于其他相关的有机光电技术。
带电粒子诱导的cspbbr 3(CPB)perovskite量子点(QD)的辐射发光(RL)。用光电倍增管(PMT)与脉冲数字技术相结合分析了RL响应,从而可以评估单个A辐射事件的时间分辨波形。发现电脉冲的上升和衰减过渡时间非常接近仪器限制,而比常规无机闪烁体中通常测得的数量级要短。基于对时序特征的统计分析,我们的研究评估了在使用CSI(TL)闪烁体进行比较测量中证明的钙钛矿纳米材料的潜力。将脉冲电荷的分布转换为发光强度,并用蒙特卡洛模拟拟合,估计RL产量为2.95个光子/KEV,而检测效率(DE)的估计值为29.2%,指的是我们的平均簇厚度为5 QD层。2021作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:研究了采用低热梯度提拉技术(LTG Cz)生长的 Eu 3 + 掺杂 Bi 12 GeO 20(BGO)硅铅矿块状晶体的光谱特性。测量了室温(300 K)和 10 K 下的吸收光谱和发射特性。观察到由 Eu 3 + 离子直接激发和由 Bi 3 + 和 Eu 3 + 离子之间的能量转移引起的紫外激发下的发光。研究了 Eu 3 +:BGO 掺杂基质中 Bi 3 + → Eu 3 + 的能量转移机制。基于 Judd-Ofelt 形式计算了 Ω λ 参数和辐射寿命。基于获得的实验结果,还确定了分支比和电偶极跃迁概率。已观察到 Eu 3 + 的 5 D 0,1,2 能级发出的发光,其中 5 D 0 能级的发光最强。观察到的最强发光带对应于 578.7 nm 处的 5 D 0 → 7 F 0 跃迁。研究了理论上被禁止的 5 D 0 → 7 F 0 发光强烈存在的原因。