脱位密度。那些不同的方法不观察到相同类型的位错,即统计存储的位错(SSD)和/或几何必需的脱位(GND)。有些是直接测量技术,例如ECCI和TEM成像,而其他是非方向方法,即HR-EBSD和XRD测量。因此,提出了使用这四种技术在未变形和变形的双链钢上获得的测量值的定量比较。对于低变形,位错密度很小(成像方法相当性能,而XRD 1- 5×10 13 m - 2),测量值的不确定性水平高。HR-EBSD测量结果表明,结果与这些变形水平的其他方法非常吻合。对于较高的变形水平(上面的脱位密度),成像方法不再相关,因此1 - 3×10 14 m - 2
可以通过刚性纸来创建可弹性变形的材料,通过对可以局部弯曲和弯曲的适当网格进行图案。我们演示了如何使用三光束干扰光刻在大面积上制造微观模式。我们产生的网格在任何刚性材料膜中都会引起较大且可靠的弹性。微涂层微观会产生可拉伸的导电膜。当样本可逆地拉伸至30%并且没有引入重大缺陷时,电导率变化可以忽略不计,而与迅速撕裂的连续纸相比。缩放分析表明,我们的方法适合于进一步的微型化和大规模制造可拉伸功能膜。因此,它为电子,光子和传感应用中的可拉伸互连以及各种其他可变形结构打开了路线。
以其 3D 产品生命周期管理 (PLM) 解决方案为标志。波音公司采用了这些元素,并与达索系统公司进一步开发,以创建一个支持整个 787 项目的全方位软件程序。达索系统公司航空航天和国防副总裁 Mich Tellier 开始说道:“实际上,我们创建的是我们今天所说的基于模型的系统工程 (MBSE)。这意味着将许多系统工程流程(例如设计和结构开发)集成到全数字制造、物流、制造和车间跟踪中,甚至集成到飞机维护和支持包的开发中。“另一个元素是使用我们所谓的‘关系设计’来增强它,这意味着设计和工程是可变形的。如果你
摘要:键合线是电力电子模块 (PEM) 中最容易发生故障的部件之一,通常使用硅胶包裹键合线。为了研究硅胶包裹键合线的变形,本文报告了使用线场光学相干断层扫描 (LF-OCT) 技术精确测量键合线的电-热-机械 (ETM) 变形的方法。由于 LF-OCT 系统具有有利的并行检测方案,因此我们开发了一种 LF-OCT 系统,该系统可一次性捕获键合线样品的整个横截面图像 (B 扫描)。结合傅里叶相位自参考技术,可以定量测量键合线的变形,精度可达 0.1 nm。当将相机成像尺寸设置为 1920×200 像素时,实现的变形测量的最大采样率(帧率)为 400 Hz,为监测键合线的 ETM 变形动态提供 2.5 ms 的时间分辨率。我们发现凝胶包裹的键合线的 ETM 变形比裸键合线的 ETM 变形大约小三倍。这些结果首次实验证明,LF-OCT 可成为研究硅凝胶包裹键合线随时间变化的 ETM 变形的有用分析工具。索引术语-键合线可靠性、硅凝胶、电-热-机械变形、线场光学相干断层扫描 (LF-OCT) I. 引言电力电子模块 (PEM) 广泛用作可再生能源发电和运输电气化中的开关半导体器件 [1]。由于 PEM 通常应用于安全和关键任务场景,如电力列车、航空航天和海上风电,因此 PEM 的可靠性受到学术界和工业界的广泛关注 [2-4]。引线键合技术是目前最广泛使用的封装方法
提出了基于耦合的多核纤维的光学量表并实验证明。通过使用直接激光写作来选择性打破索引索引对称性,引入了核之间的不对称模式耦合。这允许使用仅使用一个传感器的结构中检测和不同类型的变形的能力来制造光仪。将制造的光学仪与校准的商业仪表和纤维式光栅进行了比较,例如应变,振动和曲率仪表。测试表明,这种新型光学量表的性能优于市售传感器,并且具有最高的敏感性。所提出的技术可能是制造具有比以前获得更多功能和功能更好的新型感应设备的关键。
波音公司在其 3D 产品生命周期管理 (PLM) 解决方案的旗帜下开发了这些软件。波音公司采用了这些元素,并与达索系统公司进一步开发,以创建一个支持整个 787 项目的全方位软件程序。达索系统公司航空航天和国防副总裁 Mich Tellier 开始说道:“实际上,我们创建的是今天所谓的基于模型的系统工程 (MBSE)。这意味着将许多系统工程流程(例如设计和结构开发)集成到全数字制造、物流、制造和车间跟踪中,甚至集成到飞机维护和支持包的开发中。”“另一个元素是使用我们所谓的‘关系设计’来增强它,这意味着设计和工程是可变形的。如果你
•小,“基于透明的离子 - 凝胶电极和量子点颜色转换”的高度可变形的电致发光设备的明亮双方白光照明“(2024)•高级科学,“高级科学”,“日常生活中的导电水平的无缝集成:从准备式和可穿戴材料中的机械材料(2024年)(20224)(2024)•电动发光设备达到高街道性可容纳1400%”(2023年)•高级功能材料,“智能皮肤 - 粘合剂途径:从设计到生物医学应用”(2023)•化学工程杂志,“自粘合体热智能智能智能智能,用于自适应的材料在多样化的气候条件下进行自适应材料控制”(2022222222222) ”(〜2026)•科学技术部,“太阳能可持续使用研究中心”(〜2025)”(〜2023)
本研究旨在通过控制复合机翼结构元件的屈曲行为来设计新型可定制且有效的机制,以供将来的变形应用。与传统的抗屈曲设计不同,我们的想法是通过使用非线性后屈曲响应来控制刚度变化,从而重新分配机翼结构中的载荷,从而接受这种内置不稳定性。为了实现所需的多稳态配置,通过使用点、面积和最大位移约束来抑制平面外屈曲变形,研究了三种屈曲驱动机制。首先在复合板上对所提出的机制进行数值研究,然后将其集成以控制简化的薄壁复合翼盒的扭曲。所提出的机制提供了多稳态配置的有效设计机会,并展示了通过控制结构部件中的屈曲行为来实现复合机翼变形的潜力。
分层的钙钛矿是杂化2D材料,它是通过有机铵阳离子层分隔的无机铅卤化物网络的自组装形成的。在这些天然量子孔结构中,量子和介电结构导致强烈依赖于材料组成的激烈的激子状态。在本文中,我们回顾了对分层钙钛矿中激子光体物理学的当前理解,并强调了对其激子特性进行调整的许多方式。特别是,我们专注于激子动力学与晶格运动和软性杂种晶格的局部变形的耦合。这些效果导致了复杂的激发状态动力学,为光电材料设计设计了新的机会,并探索了量子固定系统中基本光物理学的探索。