1。摘要.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
1。Sharma O.P.,1993。植物分类学。第二版。McGraw Hill出版商。2。Pandey B.P.,2001。植物植物的教科书。第四版。S. Chand Publishers,印度新德里。 3。 Jordan E.L.,Verma P.S.,2018年。 弦动物学。 S. Chand Publishers,印度新德里。 4。 Rastogi,S.C.,2019年。 动物生理的要点。 第四版。 新时代国际出版商。 5。 Verma P.S.,Agarwal V.K.,2006年。 细胞生物学,遗传学,分子生物学,进化和生态学。 S. Chand Publishers,印度新德里。 6。 Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。S. Chand Publishers,印度新德里。3。Jordan E.L.,Verma P.S.,2018年。弦动物学。S. Chand Publishers,印度新德里。 4。 Rastogi,S.C.,2019年。 动物生理的要点。 第四版。 新时代国际出版商。 5。 Verma P.S.,Agarwal V.K.,2006年。 细胞生物学,遗传学,分子生物学,进化和生态学。 S. Chand Publishers,印度新德里。 6。 Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。S. Chand Publishers,印度新德里。4。Rastogi,S.C.,2019年。动物生理的要点。第四版。新时代国际出版商。5。Verma P.S.,Agarwal V.K.,2006年。细胞生物学,遗传学,分子生物学,进化和生态学。 S. Chand Publishers,印度新德里。 6。 Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。细胞生物学,遗传学,分子生物学,进化和生态学。S. Chand Publishers,印度新德里。 6。 Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。S. Chand Publishers,印度新德里。6。Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。Sathyanarayana U.,Chakrapani,U.,2013年。生物化学。第四版。Elsevier Publishers。7。Jain J.L.,Sunjay Jain,Nitin Jain,2000年。生物化学的基础。S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。S. Chand Publishers,印度新德里。8。Karen Timberlake,William Timberlake,2019年。基本化学。第五版。皮尔逊出版商。9。Subrata Sen Gupta,2014年。有机化学。第一版。牛津出版商。
在过去三年中,全球锁定,地缘政治紧张局势不断升级和原材料的高需求导致电子芯片短缺。这种短缺影响了家用电器,汽车,计算设施和整个技术领域的生产,对移动网络,可再生能源生产,医疗保健和数字化产生了负面影响。以前的现代社会从未经历过这样的短缺,因此自主芯片生产,而使它最重要的技术是光刻的光刻和光学维度计量学,对世界上最大的经济体来说已经在战略上变得重要。自2000年以来,欧洲的半导体制造业已从全球生产能力的24%下降到8%。此外,它目前主要集中在成熟的微芯片技术上,仅在高级芯片技术上只有很小的一部分。
这项工作引入了一种新的音乐生成系统,称为Ativectmachine-Classical,该系统能够实时产生有效的经典音乐。效果旨在将其纳入生物反馈系统(例如脑部计算机间隙)中,以帮助用户意识到并最终调解其自身动态的有效状态。也就是说,该系统是为基于音乐的MedTech开发的,以支持用户中的实时情感自我调节。我们提供了基于规则的概率系统体系结构的概述,描述了系统的主要方面以及它们的新颖方式。然后,我们介绍了一项听众研究的结果,该研究是为了验证系统可靠地向听众传达目标情绪的能力。发现表明,有效的电池古典作品在将各种含量的唤醒(r 2 = 0.96)传达给听众非常有效,并且在价上也很令人信服(r 2 = 0.90)。未来的工作将融入了典型的现实反馈系统中,以利用有效的音乐的效率来实现听众的情感健康。
在本文中,我们提出了一种新型的Hadamard Trans-form-基于基于量子量子量子计算的神经网络层。它在Hadamard变换域中实现了常规卷积层。这个想法基于HT卷积定理,该定理指出,两个向量之间的二元卷积等于其HT表示的元素乘法。计算HT仅仅是在每个量子位上应用于每个量子的应用,因此我们提出的层的HT计算可以在量子计算机上实现。与常规Conv2D层相比,所提出的HT- perceptron层在计算上更有效。与CNN相比具有相同数量的可训练参数和99.26%的测试准确性,我们的HT网络达到99.31%的测试效果,而MNIST数据集中降低了57.1%的MAC;在我们的ImagEnet-1K实验中,我们的基于HT的RESNET-50超过了基线RESNET-50的准确性,使用少11.5%的参数,而MAC少12.6%。
在他的及其配套论文中,我们展示了量子场理论,其具有高对称性,允许比我们假设的更广泛的经典动力学类型。在这篇文章中,我们展示了从模式积分或哈密顿和广义相对论公式中提取的动力学允许不满足爱因斯坦全套方程的经典状态。这个量取决于哈密顿对初始状态施加的动量约束。尽管如此,量子场论仍然允许测量这些状态随时间的变化。这些状态随时间演变,以致在经典层面上,全套爱因斯坦方程似乎成立,而这些状态的物理效应可归因于辅助的、协变的、能量矩张力守恒,或者没有内部自由度。我们推导出这些状态的广义爱因斯坦方程,并表明在均匀和等向性的初始背景基态中,对相同高程分量的扩展有贡献。此状态的非均匀分量可能源于按线性级数线性增长的曲率扰动。这个对爱因斯坦方程的辅助贡献可能会为我们提供一种破坏零能条件的简单方法,从而实现诸如宇宙的引力动力学。弹跳 andw 或 mh oles。
diatom-Diatom碰撞的量子古典(QC)方法是由G.D.计费[6],被证明是准确,有效的,可以获得涉及振动能传递的重型突击过程的横截面和速率系数。该方法的关键特征是,振动的自由度是机械处理的,而其他自由度(翻译和旋转运动)则经过经典处理。为了以自洽的方式处理整个系统,量子机械的自由度必须在周围经典动作的影响下正确地发展。反过来,经典的自由度必须对量子过渡做出正确的反应。在目前的两个双原子分子的量子古典方法中,振动和旋转振动耦合通过紧密耦合方程式对量子进行量子处理。首先,总振动波函数是根据旋转扰动的摩尔斯波波函数ϕ v 1(r 1,t)ϕ v 2(r 2,t)扩展的:
摘要。比特币体系结构在很大程度上依赖于ECDSA Signature方案,该方案被量子对手打破,因为可以从量子多项式时间中的公共密钥中计算秘密密钥。为了减轻此攻击,可以将比特币支付给公共密钥(P2PKH)的哈希。但是,第一个付款揭示了公共密钥,因此附加到其上的所有位硬币都必须同时花费(即剩余的金额必须转移到新的钱包中)。在这种方法中仍然存在一些问题:业主很容易受到签名公开的时间到签名的时间,并承诺将其投入区块链。此外,阈值签名没有等效的机械性。最后,尚未对P2PKH进行正式分析。在本文中,我们用隐藏的公钥对挖掘签名的安全概念进行了正式的安全概念,我们提出并证明了通用转换的安全性,该通用转换将经典签名转换为仅一次可以使用一次的量子后签名。我们将其与P2PKH进行了比较。也就是说,我们的建议依赖于前图像的抵抗力,而不是p2pkh的碰撞阻力,因此可以较短的哈希。补充,我们提出了延迟签名的概念,以解决与公共分类帐使用时匆忙对手的问题,并讨论我们方法的优势和缺点。我们将结果进一步扩展到阈值签名。
摘要:数字经济的兴起为全球绿色发展提供了一条替代路径。本文在分析绿色发展、数字经济和分工内涵的基础上,以新兴古典经济学的分工思想为基础,研究数字经济赋能绿色发展的理论机制。从研究结果可以看出,数字经济通过技术变革有利于交易效率的提高和分工模式的演进,在政府绿色制度和市场调节机制的双重作用下,推动交易由“黑色分工”模式向“绿色分工”模式转变,从而赋能绿色发展。数字经济对绿色发展水平的影响并不是单一的线性关系。本文创造性地从分工的视角分析了数字经济赋能绿色发展的理论机制,这些研究成果对于促进全球经济的可持续发展具有很好的理论价值和现实意义。
命题考虑上述 AK 经济,其中代表性家庭的偏好由 (1) 给出,生产技术由 (6) 给出。假设条件 (12) 成立。那么,存在一条唯一的均衡路径,其中消费、资本和产出都以相同的速率 g ∗ ≡ ( A − δ − ρ ) / θ > 0 增长,从任何初始正的人均资本存量 k ( 0 ) 开始,储蓄率由 (16) 内生决定。