TB仍然是WHO欧洲地区和全球死亡率和发病率的重要原因。耐药结核病的速率在全球范围内提高。营养不良与结核病疾病过程有显着相互作用,可能是重要的治疗靶点。结核病与营养不良之间存在双向关系:营养不良的个体患有结核病的风险更大,而结核病是一种可分解代谢疾病,可能引起或加剧营养不良。营养不良的结核病患者的预后较差,在患有RR/MDR-TB的患者中更为明显。 营养不良会以多种方式损害免疫系统的功能,这可能是观察到的一些关系的基础。 此外,营养不良可以影响药物的吸收和加工方式,从而导致治疗失败以及对结核病患者治疗毒性率的下游影响。结核病患者的预后较差,在患有RR/MDR-TB的患者中更为明显。营养不良会以多种方式损害免疫系统的功能,这可能是观察到的一些关系的基础。此外,营养不良可以影响药物的吸收和加工方式,从而导致治疗失败以及对结核病患者治疗毒性率的下游影响。
量子技术目前正在开发能够操纵单量子系统的量子技术。在量子领域的嫁妆中,纠缠是新型量子革命的基本资源之一。在这种情况下,当操纵系统状态时,人们面临着保护纠缠的问题。在本文中,我们研究了经典驾驶场对两个量子与波体环境相互作用的发电纠缠的影响。我们讨论了经典领域对两个(不同)量子位之间的纠缠产生的影响,以及它在保护初始状态纠缠免受其环境引起的衰减中具有建设性作用的条件。尤其是在类似Qubit的情况下,我们找到了系统的固定子空间,希尔伯特空间的固定子空间的特征是不取决于环境属性以及经典驾驶场上。因此,我们能够确定与环境短暂相互作用后达到最大纠缠的固定状态的条件。我们表明,总体而言,经典驾驶领域在强耦合体制中对纠缠保护具有建设性作用。另外,我们说明可以在与环境相互作用后的纠缠状态,甚至是在纠缠的稳态中驱动的可分解初始状态。
纠缠在量子物理中起着至关重要的作用,是量子信息处理的关键资源。然而,由于现有方法操作不实用,纠缠检测和量化被认为很难。这项工作提出了三种近期有效的算法,利用混合量子经典技术来解决这一困难。第一个算法找到二分纯态的施密特分解——一种分析纠缠性质和结构的有力工具。虽然对数负性可以通过施密特分解计算出来,但我们提出了第二种算法来估计二分纯态的对数负性,其中参数化量子电路的宽度进一步减小。最后,我们将我们的框架推广到混合状态,得到了第三种算法,它可以检测特定状态系列上的纠缠,并确定一般的可分解性。这三种算法都具有相似的框架,即通过利用局部参数化量子电路最大化成本函数来实现优化,与现有方法相比,具有更好的硬件效率和实用性。使用 IoP CAS 超导量子处理器在 Quantum Leaf 上进行的实验实现了我们的分析和量化近期量子设备上纠缠的方法的有效性和实用性。
氨基酸对于维持细胞完整性和代谢稳态至关重要。除了蛋白质合成之外,氨基酸也是核苷酸,脂质和细胞壁成分生物合成的前体。s。金黄色葡萄球菌可以合成许多此类氨基酸,但通常会从外部环境中转移到细胞中[2]。有限的葡萄糖可用性(例如,脓肿中)代表了一个环境,其中肽或氨基酸的分解代谢对金黄色葡萄球菌的生长很重要[3]。生物启动分析揭示了启用s的几种途径。金黄色葡萄球菌可分解多种氨基酸,进而可以生成关键的中央代谢中间体,例如丙酮酸,草乙酸和2-氧化甲酸酯。反映了氨基酸在代谢中的重要性,s。金黄色葡萄球菌具有多种寡肽磁盘,游离氨基酸转运蛋白和蛋白酶以降解宿主蛋白。分析64 s。金黄色葡萄球菌菌株表明,氨基酸代谢基因与pangenome分别相关[4],表明靶向与核心氨基酸代谢相关的转运蛋白可能具有针对多样化S的更广泛的治疗潜力。金黄色葡萄球菌分离。氨基酸,肽,渗透剂和核苷摄取系统的多样性和冗余也带来了重大挑战。在USA300_FPR3757基因组中至少有292个基因,预计将编码膜转运蛋白,其中120个似乎与氨基酸,渗透剂或核苷转运有关。从历史上看,细菌膜转运的研究生物信息学工具通常有助于识别和预测固定转运蛋白的功能,但是需要实验性工作来验证按测量值运输的底物及其生理角色。
摘要。基于内脏脂肪的代谢综合征对动脉粥样硬化心血管疾病(CVD),聚类糖尿病,血脂异常,高血压,高尿酸血症和非酒精性脂肪肝病(NAFLD)的影响很大。脂联素是一种由脂肪细胞专门分泌的蛋白质,在人体血液中大量循环,但其浓度在病理状况(例如内脏脂肪积累)下降低。广泛的临床证据表明,低脂肪核酸血症与CVD和慢性器官疾病的发展有关。尽管已经鉴定出脂联素的几个结合伴侣,例如adipor1/2,但脂联素如何对各种器官产生多种有益作用,尚待充分阐明。脂联素研究的最新进展表明,脂联素通过与独特的糖基磷脂酰肌醇锚定的T-钙粘着蛋白结合而在心血管组织上积累。脂联素/T-钙粘蛋白复合物增强了外泌体的生物发生和分泌,这可能有助于维持细胞稳态和组织再生,尤其是在脉管系统中。黄嘌呤氧化还原酶(XOR)是一种限制酶,可分解黄嘌呤和黄嘌呤与尿酸。XOR在反应过程中产生活性氧,这表明XOR参与了CVD进展的病理机制。临床和实验室研究的最新发现表明,血浆XOR活性与肝酶之间存在很强的正相关。,尤其是在NAFLD条件下,过量的肝XOR泄漏到血液中,加速了循环中嘌呤的分解代谢,使用从血管内皮细胞和脂肪细胞中分泌的低黄嘌呤,这可以促进血管重塑。在这篇综述中,我们专注于脂肪衍生的脂联素和肝脏衍生的XOR在与代谢综合征相关的CVD发展中的心血管意义。
[1] S. Abe。关于非广延物理中广义熵的 q 变形理论方面的注释。Phys. Lett.,A 224:326,1997 年。[2] S. Abe 和 AK Rajagopal。非加性条件熵及其对局部现实主义的意义。Physica,A 289:157,2001 年。[3] L. Accardi。非相对论量子力学作为非交换马尔可夫过程。Adv. Math.,20:329,1976 年。[4] A. Ac´ın、A. Andrianov、L. Costa、E. Jan´e、JI Latorre 和 R. Tarrach。三量子比特态的广义 Schmidt 分解和分类。Phys. Rev. Lett. ,85:1560,2000 年。[5] A. Ac´ın、A. Andrianov、E. Jan´e 和 R. Tarrach。三量子比特纯态正则形式。J. Phys.,A 34:6725,2001 年。[6] M. Adelman、JV Corbett 和 C. A Hurst。状态空间的几何形状。Found. Phys.,23:211,1993 年。[7] G. Agarwal。原子相干态表示态多极子与广义相空间分布之间的关系。Phys. Rev.,A 24:2889,1981 年。[8] SJ Akhtarshenas 和 M. A Jafarizadeh。贝尔可分解态的纠缠稳健性。E. Phys. J. ,D 25:293,2003 年。[9] SJ Akhtarshenas 和 MA Jafarizadeh。某些二分系统的最佳 Lewenstein-Sanpera 分解。J. Phys. ,A 37:2965,2004 年。[10] PM Alberti。关于 C ∗ 代数上的转移概率的注记。Lett. Math. Phys. ,7:25,1983 年。[11] PM Alberti 和 A. Uhlmann。状态空间中的耗散运动。Teubner,莱比锡,1981 年。[12] PM Alberti 和 A. Uhlmann。随机性和偏序:双随机映射和酉混合。Reidel,1982 年。[13] PM Alberti 和 A. Uhlmann。关于 w ∗ -代数上内导出正线性形式之间的 Bures 距离和 ∗ -代数转移概率。应用数学学报,60:1,2000 年。[14] S. Albeverio、K. Chen 和 S.-M. Fei。广义约化标准
本期特刊是 2011 年 6 月在德国联邦物理技术研究院 (PTB) 举行的第五届单光子技术国际会议的配套刊物。该团体每两年在国家计量机构举行一次会议,第一次会议于 2003 年在美国国家标准与技术研究所 (NIST,盖瑟斯堡) 举行,随后于 2005 年在国家物理实验室 (NPL) 举行,2007 年在国家计量研究所 (INRiM) 举行,2009 年在美国国家标准与技术研究所 (NIST,博尔德) 举行。这些研讨会的目的是将对单光子技术和应用感兴趣的广泛人士聚集在一起,帮助传播该领域的进展。2011 年研讨会在 15 场会议中共发表了 67 场演讲(14 场受邀演讲)和 16 场海报展示。共有来自 15 个国家的 109 名参与者参加,其中 71 名来自欧洲(主要群体为德国 22 名、意大利 17 名和英国 11 名),30 名来自北美(美国 27 名),6 名来自亚洲,2 名来自澳大利亚。迄今为止,每次研讨会之后都会出版关于单光子科学和技术科学领域的精选论文集,每篇论文都涉及特定主题。这些特刊中的第一期紧随 2003 年研讨会之后,主要涉及使用半导体器件的单光子检测,这在很大程度上是因为这是当时最发达的技术 [1]。第二期特刊更侧重于单光子源,反映了 2005 年研讨会上的大量贡献 [2]。超导探测器在 2007 年研讨会之后的第三期中成为焦点,该研讨会与欧盟第七框架项目 Sinphonia [3] 联合举办。2009 年,有多个单光子技术领域出现在特刊中,例如光子纠缠技术及应用、非经典性测量;相关、纠缠和可分解状态源设计作为基础物理测试 [4]。第 5 届单光子器件和应用研讨会专门讨论了单光子探测器和源的当前技术水平和最新发展,重点关注现有的限制、不足和改进机会。这些发展是由许多需要此类设备的应用的出现所驱动的。
架构有可能彻底改变许多人类活动,包括物流、医学和法律 2-4 ;然而,这些系统的负责任和安全地部署取决于它们是否能被人类利益相关者理解。5 针对这一问题提出了两种解决方案:一是设计本质上可解释或透明的系统,这通常会在性能上有所妥协;二是开发定制解决方案来解释一个模糊系统的事后决策。6 在本文中,我们提出了第三种方法,其中可解释性被分析为促进人类理解人工智能 (AI) 系统的问题。因此,我们提出了一种解释人工智能系统的通用方法,通过明确分析提供信息使人类能够理解和预测人工智能的问题。本文的目的是介绍一个统一的框架,从认知科学的角度以可分解组件的角度思考可解释人工智能。我们展示了这个框架如何通过阐明和模块化现有可解释人工智能系统的不同组件为先前的研究提供新的见解。一旦确定,就可以验证这些组件,并讨论这种验证对 XAI 解决方案的普遍性的影响,为 XAI 研究增加了一个新的维度。近年来,有关可解释 AI 的文献激增,7 但仍然缺乏 XAI 技术的连贯理论框架,8 并且现有的分类法是基于解释技术背后的技术基础,而不是其务实目标。这种理论的缺乏阻碍了 XAI 研究,因为它掩盖了哪些经验可以在研究和应用之间安全地转移,以及哪些组件需要在新的环境中重新验证。结果,它既降低了知识积累的速度,也降低了跨部门安全、可解释的 AI 系统的部署速度。此外,大多数 XAI 解决方案往往是由软件工程师为工程师设计的,因此没有考虑如何向非技术用户解释目标系统。 9-12 这是有问题的,因为成功的解释显然取决于用户及其目标,13 如果成功部署了 AI 系统,软件工程师也只是用户的一小部分。可解释的 AI 是一个复杂的问题,既有技术成分,也有心理成分。以结构化和规范的方式阐述 XAI 问题的理论框架可能会揭示以前看似不相关的不同方法和结果之间的关联。这样的框架还将 XAI 问题分解为代表基本组件和依赖关系的抽象,可以单独验证。此外,这种模块化方法将支持部署,因为它允许对解释的哪些子组件可以推广到哪些上下文进行正式测试。我们提出贝叶斯教学作为这样一个框架,它将解释形式化为教师和学习者之间的一种社会行为。在下一节中,我们将解释贝叶斯教学如何将广泛的XAI系统抽象为以下四个组成部分(见表1):(a)目标推理,(b)解释,(c)被解释者模型,(d)解释者模型。具体来说,我们展示了如何应用贝叶斯教学来分解流行的XAI方法类。然后,我们说明如何通过用户研究半独立地验证分解后的部分,并反思贝叶斯教学如何在XAI研究和应用中促进以人为本。最后,我们讨论分解部分的泛化,包括对组件的操作和重组的评论。
量子纠缠是一种重要资源,在量子信息处理、量子通信、量子计算和其他现代量子技术中发挥着基础性作用 21,31。特别是,任何二分纠缠态都会增强隐形传态能力 29 并表现出隐藏的非局域性 30。量子任务的实用性通常随着纠缠量的增加而增加 2,41,42。纠缠态的表征在理论和实践中都至关重要。然而,区分可分离态和纠缠态的问题仍然悬而未决;事实上,它是 NP 难问题 14。对于量子比特-量子比特和量子比特-量子三体系统,著名的 Peres-Horodecki 正部分转置 (PPT) 标准给出了必要和充分可分离性条件 19,32。在高维中,这一条件才是必要的,这首先在四元组-四元组系统 19 中得到证明。更精细的检测方法包括可计算交叉范数或重新调整 (CCNR) 标准 4、6、18、34、相关矩阵标准 9、10、局部不确定性关系标准 16、约化密度矩阵标准 3 和协方差矩阵标准 13。另一种纠缠检测方法是通过纠缠见证,它们是 Hermitian 块正(但不是正)算子。因此,任何这样的算子在可分离状态下都是正的,并且状态 ρ 是可分离的当且仅当对于每个纠缠见证 W ,Tr(ρW)≥0。所有纠缠态都有检测它们的见证人 43、44。换句话说,如果 ρ 是纠缠的,则存在一个(非唯一的)见证人 W ,使得 Tr(ρW)<0。问题在于为给定状态找到合适的见证人。与其他检测方法相比,选择纠缠见证人的优势在于,状态的不可分性取决于计算该状态下 W 的期望值。因此,它比全状态断层扫描需要的信息更少,这也意味着需要更少的实验设备和更少的测量。存在一类特殊的见证人,可以检测具有正部分转置的量子态,也称为束缚纠缠态 17、20、24、25、44。它们被称为不可分解的,因为它们不能分解为 W = A + BŴ,其中 A 和 B 为正,其中Ŵ是部分转置。此类算子没有通用的构造方法,而且通常很难确定见证人是否可分解。然而,已经发现了几类不可分解的纠缠见证,例如与众所周知的重新调整或可计算交叉范数 (CCNR) 可分离性标准 5、6、35 和协方差矩阵标准 12、13、26 相关的标准,以及它们的概括 37、38。在构建纠缠见证时,人们经常使用相互无偏基 (MUB)。C d 中的正交基是相互无偏的当且仅当属于不同基的任意两个向量之间的转换概率为常数 11 。在参考文献 8 中,作者使用 MUB 定义了一类新的见证人,并分析了它们在 d = 3 中的属性。这种构造已以多种方式得到推广。Li 等人为相互无偏测量 (MUM) 27 和对称信息完全测量 (SIC-POVM) 28 引入了类比算子。Wang 和 Zheng 45 考虑了不同维度的复合系统中基于 MUB 的见证人。Hiesmayr 等人 15 表明,不等价和不可扩展的 MUB 集有时对检测纠缠更有用,而 Bae 等人 1 发现需要超过 d / 2 + 1 个 MUB 来识别束缚纠缠态。涵盖各种纯度的 MUM 均能检测到与
韩国自然农法 (KNF) 是由 Hankyu Cho 创立的一种环保型农耕方式。它利用被称为本土微生物和营养循环的良好天然助手帮助植物和动物茁壮成长。KNF 采用了日本和韩国的古老农耕技术,并使其安全使用,而不是使用可能危害人类和环境的有害化学物质。KNF 希望帮助农民找到一种更好的种植粮食的方法,而不会伤害自然。Cho 先生之所以开始使用这种方法,是因为他想停止在韩国农业中使用刺激性化学物质。他相信大自然可以为种植健康的动植物提供所有答案。KNF 的核心基于营养循环理论,该理论有助于在植物生长的不同阶段选择正确的事物。这样,农民就可以在不花费太多金钱或精力的情况下从小面积获得良好的结果。他们还保护甚至改善了周围的环境。土壤管理在 KNF 中非常重要。农民应该给土壤施肥,土壤会照顾植物。KNF 教导如何利用堆肥、草皮覆盖物和微生物使土壤健康。草皮覆盖物可保护土壤免受侵蚀,保持水分,并为蚯蚓、有益昆虫和微生物提供良好的栖息地。这些微生物助手(本土微生物)可分解有机物质、抵抗疾病并为植物提供营养。然而,如果它们的平衡被破坏,土壤健康就会下降,植物就会变得虚弱,疾病就会发生。KNF 试图通过收集、培养和将不同的微生物引入土壤来保持这种平衡。这些微生物是 KNF 系统的基础。它们帮助农民利用当地原料进行农业投入。一些例子包括发酵植物汁 (FPJ),它由发酵植物材料制成,其中富含微生物、酶和有益于植物生长的营养物质。FPJ 使用健康的植物样本来确保发酵物具有所有必要的特性。促进植物健康。KNF 的 FPJ 可帮助幼苗适应温度变化,同时促进植被生长。它还可以作为害虫引诱剂,单独使用或与其他解决方案结合使用。发酵植物汁在室温下可保持有效长达 30 天,冷藏下可保持有效长达一年。东方草本营养素 (OHN) 是一种天然发酵植物刺激剂,源自草本和香料,经证实可促进植物生长并改善其健康。OHN 结合了肉桂、大蒜和生姜等成分,具有抗菌、杀真菌和抗生素特性,这些特性可通过发酵保留下来。它与其他天然农业投入品(如 IMO-3 和 IMO-4)混合,可处理土壤和种子。作为植物滋补品,OHN 可有效解决植物的根腐病和全身虚弱问题。OHN 需要一些时间来发酵,但可以在 45 天内过滤并使用。为了更快地提取和长期储存,它需要酒精。乳酸菌(Lactobacillus)简称 LAB 是一种厌氧微生物,可将糖转化为乳酸,在卷心菜等植物表面繁衍生息。LAB 与 FPJ 混合可帮助牲畜消化或加速堆肥。在 KNF 中,LAB 通常使用洗米淀粉作为食物来源在牛奶中培养。与 IMO 结合,它可以软化土壤并松动压实,为蓬松、通气良好的土壤创造小通道。LAB 溶液应远离阳光直射,最好冷藏,但与红糖混合后可在室温下保存更长时间。水溶性钙 (WS-Ca) 是一种由蛋壳与醋反应而获得的钙溶液。钙在环境中很常见,有些植物可能难以正确使用它,导致过度生长、生长虚弱或果实脆弱。WS-Ca 为植物提供了一种易于吸收的钙,帮助它们利用其他营养物质并发育出强壮的细胞。它可在 3-10 天内使用,并可无限期地存放在阴凉黑暗的地方。KNF 依靠观察害虫的行为来防止侵扰。理想情况下,多样化的健康植物会阻止或完全混淆害虫。然而,大多数害虫更喜欢特定的植物,因此 KNF 使用芳香昆虫引诱剂 (AIA) 将有害昆虫引诱出耕地。AIA 是 FPJ、FFJ 和白兰地等酒精的混合物,旨在将昆虫吸引到溶液中,防止它们在田间产卵。韩国自然农业强调人道的家禽生产,专注于饲养快乐、健康的鸟类的最佳环境,非常重视鼓励自然通风、加热和卫生的家禽舍的设计。这让鸡能够表现出它们的自然倾向,同时最大限度地减少农民的劳动需求。KNF 的一个核心原则是让鸡直接接触土壤,正如 Cho 先生所倡导的那样,他认为这有助于保持鸟类的健康。但是,在需要混凝土地板的地方也做出了安排。鸡粪的发酵、分解和消毒由土著微生物 (IMO) 协助,因此除非需要用作堆肥,否则鸡粪会留在鸡舍中。Cho 先生设计的系统可以满足鸡的需求,而无需人工加热、使用刺激性化学物质或可疑药物。自推出以来,韩国自然农法一直是有机农业方法的巅峰,激发了 JADAM 有机农业等其他系统的发展。虽然 Jadam 和 KNF 方法有着相似的理想,但它们之间也存在差异,最初 KNF 更复杂,但随着反复实践会变得更容易。营养循环理论旨在通过了解动物和植物在不同生长阶段需要不同的营养,为获得最佳效果提供充足的营养。本土微生物肥料是指在微生物存在下通过分解有机物质而产生的农业投入,与 JADAM 液体肥料的关系比 KNF 更密切。赵大师的工作重点是从自己的废弃物中创造农业投入。这包括使用杂草、野生植物、蛋壳等来制造堆肥、肥料和其他必要的营养物质。他的方法旨在利用发酵植物汁 (FPJ) 和水溶性钙 (WCA) 等技术将农场废弃物回收利用为可用的生物。这些过程产生了用于植物生长的强大工具,例如益生菌溶液和水溶性钙。其他投入包括来自鱼类副产品的鱼氨基酸 (FAA) 和 JADAM 润湿剂 (JWA),赵大师的著作《橙皮书》和《绿皮书》中对此进行了讨论。KNF 通过给予和接受的原则强调农业中的共生关系,促进土壤、植物、昆虫、动物和人类之间的互惠关系。通过关注循环能量流并尽量减少外部投入,KNF 减少了对昂贵投入的外部依赖,从而促进了可持续发展。