Loading...
机构名称:
¥ 1.0

量子纠缠是一种重要资源,在量子信息处理、量子通信、量子计算和其他现代量子技术中发挥着基础性作用 21,31。特别是,任何二分纠缠态都会增强隐形传态能力 29 并表现出隐藏的非局域性 30。量子任务的实用性通常随着纠缠量的增加而增加 2,41,42。纠缠态的表征在理论和实践中都至关重要。然而,区分可分离态和纠缠态的问题仍然悬而未决;事实上,它是 NP 难问题 14。对于量子比特-量子比特和量子比特-量子三体系统,著名的 Peres-Horodecki 正部分转置 (PPT) 标准给出了必要和充分可分离性条件 19,32。在高维中,这一条件才是必要的,这首先在四元组-四元组系统 19 中得到证明。更精细的检测方法包括可计算交叉范数或重新调整 (CCNR) 标准 4、6、18、34、相关矩阵标准 9、10、局部不确定性关系标准 16、约化密度矩阵标准 3 和协方差矩阵标准 13。另一种纠缠检测方法是通过纠缠见证,它们是 Hermitian 块正(但不是正)算子。因此,任何这样的算子在可分离状态下都是正的,并且状态 ρ 是可分离的当且仅当对于每个纠缠见证 W ,Tr(ρW)≥0。所有纠缠态都有检测它们的见证人 43、44。换句话说,如果 ρ 是纠缠的,则存在一个(非唯一的)见证人 W ,使得 Tr(ρW)<0。问题在于为给定状态找到合适的见证人。与其他检测方法相比,选择纠缠见证人的优势在于,状态的不可分性取决于计算该状态下 W 的期望值。因此,它比全状态断层扫描需要的信息更少,这也意味着需要更少的实验设备和更少的测量。存在一类特殊的见证人,可以检测具有正部分转置的量子态,也称为束缚纠缠态 17、20、24、25、44。它们被称为不可分解的,因为它们不能分解为 W = A + BŴ,其中 A 和 B 为正,其中Ŵ是部分转置。此类算子没有通用的构造方法,而且通常很难确定见证人是否可分解。然而,已经发现了几类不可分解的纠缠见证,例如与众所周知的重新调整或可计算交叉范数 (CCNR) 可分离性标准 5、6、35 和协方差矩阵标准 12、13、26 相关的标准,以及它们的概括 37、38。在构建纠缠见证时,人们经常使用相互无偏基 (MUB)。C d 中的正交基是相互无偏的当且仅当属于不同基的任意两个向量之间的转换概率为常数 11 。在参考文献 8 中,作者使用 MUB 定义了一类新的见证人,并分析了它们在 d = 3 中的属性。这种构造已以多种方式得到推广。Li 等人为相互无偏测量 (MUM) 27 和对称信息完全测量 (SIC-POVM) 28 引入了类比算子。Wang 和 Zheng 45 考虑了不同维度的复合系统中基于 MUB 的见证人。Hiesmayr 等人 15 表明,不等价和不可扩展的 MUB 集有时对检测纠缠更有用,而 Bae 等人 1 发现需要超过 d / 2 + 1 个 MUB 来识别束缚纠缠态。涵盖各种纯度的 MUM 均能检测到与

通过对称测量构建的纠缠见证的不可分解性

通过对称测量构建的纠缠见证的不可分解性PDF文件第1页

通过对称测量构建的纠缠见证的不可分解性PDF文件第2页

通过对称测量构建的纠缠见证的不可分解性PDF文件第3页

通过对称测量构建的纠缠见证的不可分解性PDF文件第4页

通过对称测量构建的纠缠见证的不可分解性PDF文件第5页

相关文件推荐

2025 年
¥1.0
2025 年
¥1.0
2023 年
¥2.0
2021 年
¥1.0
2022 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0