征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
近年来,检测变形人脸图像的任务变得非常重要,以确保基于人脸图像的自动验证系统(例如自动边境控制门)的安全性。基于深度神经网络 (DNN) 的检测方法已被证明非常适合此目的。然而,它们在决策过程中并不透明,而且不清楚它们如何区分真实人脸图像和变形人脸图像。这对于旨在协助人类操作员的系统尤其重要,因为人类操作员应该能够理解其中的推理。在本文中,我们解决了这个问题,并提出了聚焦分层相关性传播 (FLRP)。该框架在精确的像素级别向人类检查员解释深度神经网络使用哪些图像区域来区分真实人脸图像和变形人脸图像。此外,我们提出了另一个框架来客观地分析我们方法的质量,并将 FLRP 与其他 DNN 可解释性方法进行比较。该评估框架基于移除检测到的伪影并分析这些变化对 DNN 决策的影响。特别是,如果 DNN 的决策不确定甚至不正确,与其他方法相比,FLRP 在突出显示可见伪影方面表现得更好。
首先,我们研究了生成超级马里奥关卡的不同可能性。TOAD-GAN [ 3 ] 仅使用一个示例即可进行训练。该方法还使用户能够通过更改代表生成器网络输入的噪声向量来控制生成过程的输出。由于设计师无法解释噪声向量,因此设计师仍然无法根据自己的需求设计内容。为了实现这一点,必须让设计师能够解释噪声向量,并将噪声向量的不同区域映射到噪声向量变化所产生的内容。生成超级马里奥关卡的另一种方法是使用带有图块集的进化算法 [ 4 ]。图块集强制输出的一致性,而 Kullback-Leiber 散度
● D. Gunning,可解释的人工智能(xAI),技术代表,国防高级研究计划局(DARPA)(2017)● AB Arrieta,等人。可解释的人工智能(XAI):概念、分类法、机遇和挑战,走向负责任的人工智能。信息融合 58(2020):82-115。● E. Tjoa、C. Guan,可解释的人工智能(XAI)调查:面向医学 XAI (2019)。arXiv:1907.07374。● LH Gilpin、D. Bau、BZ Yuan、A. Bajwa、M. Specter、L. Kagal,解释解释:机器学习可解释性概述 (2018)。 arXiv:1806.00069 ● FK Došilović、M. Brćić、N. Hlupić,可解释的人工智能:一项调查,载于:第 41 届信息和通信技术、电子和微电子国际会议 (MIPRO),2018 年,第 210-215 页。● A. Adadi、M. Berrada,窥视黑匣子内部:可解释的人工智能 (XAI) 调查,IEEE Access 6 (2018) 52138-52160。● O. Biran、C. Cotton,机器学习中的解释和论证:一项调查,载于:IJCAI-17 可解释人工智能 (XAI) 研讨会,第 8 卷,2017 年,第 1 页。● ST Shane、T. Mueller、RR Hoffman、W. Clancey、G. Klein,《人机交互系统中的解释:可解释人工智能的关键思想和出版物及参考书目的文献元评论概要》,国防高级研究计划局 (DARPA) XAI 计划技术代表 (2019)。● R. Guidotti、A. Monreale、S. Ruggieri、F. Turini、F. Giannotti、D. Pedreschi,《解释黑盒模型的方法调查》,ACM 计算调查 51 (5) (2018) 93:1–93:42。
第二,我们讨论法律,技术和行为因素如何提供有关在哪种背景下使用我们的法律-XAI分类法的解释的指导。以信用评分为例,我们演示了法律如何规定可以将哪种类型的解释方法用于特定算法决策系统。我们展示了法律,计算机科学和行为原则的结合如何指导决策者,法律学者和计算机科学家为特定法律领域选择正确的解释方法。第三,我们证明了如何将我们的法律-XAI分类法应用于包括医疗补助,高等教育和自动决策在内的各个领域。我们认为,在创建解释权时,决策者应该更具体。自动化的决定通常可以用大量的解释方法来解释,决策者应指定哪些解释应必须提高决策者的政策目标。我们的法律-XAI分类法可以帮助决策者根据其政策目标确定正确的解释方法。
© 编辑(如适用)和作者 2022。本书是开放获取出版物。开放获取 本书根据知识共享署名 4.0 国际许可证(http://creativecommons.org/licenses/by/4.0/)的条款获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供知识共享许可证的链接并指明是否进行了更改。本书中的图像或其他第三方材料包含在本书的知识共享许可证中,除非在材料的致谢中另有说明。如果材料未包含在本书的知识共享许可证中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。本出版物中使用一般描述性名称、注册名称、商标、服务标记等。即使没有具体声明,也不意味着这些名称不受相关保护法律和法规的约束,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对此处包含的材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图和机构隶属关系中的司法管辖权主张保持中立。
摘要背景:在人工智能 (AI) 应用于医疗保健领域时,可解释性是最受争议的话题之一。尽管人工智能驱动的系统已被证明在某些分析任务中表现优于人类,但缺乏可解释性仍然引发批评。然而,可解释性不是一个纯粹的技术问题,相反,它引发了一系列需要彻底探索的医学、法律、伦理和社会问题。本文对可解释性在医学人工智能中的作用进行了全面评估,并对可解释性对于将人工智能驱动的工具应用于临床实践的意义进行了伦理评估。方法:以基于人工智能的临床决策支持系统为例,我们采用多学科方法从技术、法律、医学和患者的角度分析了可解释性对医学人工智能的相关性。基于这一概念分析的结果,我们随后进行了伦理评估,使用 Beauchamp 和 Childress 的“生物医学伦理原则”(自主、仁慈、不伤害和正义)作为分析框架,以确定医疗 AI 中可解释性的必要性。结果:每个领域都强调了一组不同的核心考虑因素和价值观,这些因素与理解可解释性在临床实践中的作用有关。从技术角度来看,可解释性必须从如何实现和从发展角度来看有什么好处两个方面来考虑。从法律角度来看,我们将知情同意、医疗器械认证和批准以及责任确定为可解释性的核心接触点。医学和患者的观点都强调了考虑人类行为者和医疗 AI 之间相互作用的重要性。我们得出的结论是,在临床决策支持系统中忽略可解释性会对医学的核心伦理价值观构成威胁,并可能对个人和公共健康产生不利影响。结论:为了确保医疗 AI 兑现其承诺,需要让开发人员、医疗保健专业人员和立法者意识到医疗 AI 中不透明算法的挑战和局限性,并促进多学科合作。关键词:人工智能、机器学习、可解释性、可解释性、临床决策支持
人工智能(AI)方法是现代世界不可或缺的一部分。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。 自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。 但是,自引入LLM之前,AI算法支持或自动执行决策过程。 Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。 在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。 此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。 这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。但是,自引入LLM之前,AI算法支持或自动执行决策过程。Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。