摘要 可食用疫苗由转基因植物和动物制成,含有免疫刺激剂。简单地说,可食用疫苗是由植物或动物产生的药物。在欠发达国家,口服疫苗更便宜,也更广泛可用。研究人员提出了可食用疫苗的概念,其中可食用的植物碎片被用作疫苗工厂。为了制造可食用的疫苗,科学家将所需的基因放入植物中,然后迫使植物产生基因中表达的蛋白质。转基因植物是转化的结果,而转化是转化植物的行为。可食用疫苗可促进粘膜免疫。肠道中的树突状细胞可以帮助天然 T 细胞激活并分化为滤泡 T 辅助细胞 (Tfh)。T 细胞和 B 细胞将对可靠、可消化的免疫做出精确反应。土豆、西红柿、香蕉、胡萝卜、烟草、木瓜、藻类和各种其他植物被用作标准疫苗的替代剂。疟疾、霍乱、肝炎、狂犬病、麻疹、轮状病毒、腹泻、癌症治疗和新冠肺炎治疗都是植物疫苗可以治疗的疾病。开发和销售可食用疫苗需要时间和奉献精神。许多用于治疗动物和人类疾病的可食用疫苗已经开发出来,并经过了不同程度的临床试验。本文强调了植物疫苗的重要性。关键词:可食用疫苗、转基因植物、植物疫苗、传染病、疫苗接种。
Anderson,J。C.(2017)。 对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。 Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。 比较剂量 - cy-细菌中诱导启动子的反应分析。 ACS合成生物学,9,843 - 855。 Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。 朝着火星上的生物制造业。 天文学和太空科学的边界,8,1 - 20。 Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。 为NASA勘探太空飞行提供药房:挑战和当前的不足。 NPJ微重力,5,14。Anderson,J。C.(2017)。对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。比较剂量 - cy-细菌中诱导启动子的反应分析。ACS合成生物学,9,843 - 855。Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。朝着火星上的生物制造业。天文学和太空科学的边界,8,1 - 20。Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。为NASA勘探太空飞行提供药房:挑战和当前的不足。NPJ微重力,5,14。
可食用的鸟巢(EBN)是豪华食品之一,由于其营养价值和治疗益处,被广泛用作健康食品。传统的EBN洗涤过程会导致体重和养分含量的减少,并且由于使用过氧化氢而增加了污染物。使用基于角蛋白分解酶的洗涤溶液在洗涤前后,使用一种探索性观察方法来检查Fuciphaga Colocalia fuciphaga的EB质量。EB清洁有四个阶段,即通过自来水,乙醇溶液,室温下的酶溶液和50 o C进行清洁,在40 o C下干燥42小时。使用AOAC方法分析了总共60个EBN(不干净,n = 30)和清洁,n = 30)。使用原子吸收分光光度计(AAS)的Ca,Fe,K和Mg的矿物质含量,除了通过分光光度计测量P。使用碳水化合物估计试剂盒测量糖蛋白含量,并使用HPLC方法确定氨基酸含量。对清洁度的评估是使用半训练的小组成员进行的评分系统进行的。获得的结果表明,干净的EBN颜色略淡黄色,清洁前后EB的清洁度从2.35增加到3.84。清洁EBN蛋白质含量降低了7.2%,而总氨基酸从38.51%降至32.71%。清洁EBN包含八个必需氨基酸,为17.93%,亮氨酸,缬氨酸,精氨酸和苏氨酸含量高(2.42-2.96%)。EBN的干净灰分含量从3.7%增加到7.8%。清洁EBN中的碳水化合物含量和铁分别为39.19±0.76%和14.35 mg/100 g干物质。高水平的碳水化合物和铁似乎是糖蛋白支持健康的良好来源,并有潜力作为贫血患者的铁的替代来源。可以使用基于角蛋白水解酶的梯田,乙醇和洗涤溶液进行逐步洗涤方法,以减轻体重减轻并改善EBN的质量。
本研究评估了13个本地南瓜种群的定量和定性性状。该实验是在随机块设计中进行的,具有3个复制(2019年至2020年)。在这项研究中考虑了以下特征:水果的数量,体重,长度,宽度和长度/宽度比,种子产量,种子产量/果实产量比,1000个种子体重,空种子的百分比,种子长度,种子宽度,种子仁/全种子/种子比和种子油百分比。此外,还进行了质量测试,包括使皮肤与内核的易于分离,味道质量以及种子形状和大小的可取性,从消费者的角度来看。方差分析显示大多数研究性状的显着差异。基于特征的平均比较结果,在Ghalami-Kalaleh#1和Mashhady-Azadshahr,然后是Mashhady-Khoy种群中观察到最高的种子产量。从消费者的角度来看,最高的口味质量属于Goushti-Kalaleh人口。结果代表了种子产量和果实之间的正相关和高度显着的相关性。在种子产量和其他相关性状之间未观察到没有显着相关性。建议在选择程序和修改高收益人群时考虑水果数字特征。
简单的摘要:近年来,人们对甲虫,板球和苍蝇等大规模饲养的可食用昆虫的兴趣大大增加。这些昆虫现在用于各种目的:作为食物和饲料,管理有机和塑料废物,排毒环境,生产生物燃料,甚至用于化妆品和药品。这些应用包括未广泛使用的废料喂养昆虫,将其转变为有价值的产品,例如食物,饲料和肥料。因此,昆虫的消化系统是这些发展过程的基石。消化部分由昆虫本身进行,部分是由肠道相关的微生物进行的。他们各自的角色仍然是一个需要的研究领域,现在很明显,微生物社区可以适应,增强和扩展昆虫消化和排毒其饲料的能力。尽管如此,这些物种还是令人惊讶的自主性,并且与消化所需的微生物没有强制性关联。相反,微生物群在同一物种方面有很大不同,并且主要由宿主的环境和饮食形成。这种自然的灵活性提供了靶向和发展昆虫和微生物之间新型关联的前景,以创建量身定制的质量菌株,以管理特定的副产品和工业应用。
可食用的涂料是可生物降解且环境友好的,用于减少塑料包装。食品保质期的延长非常重要,因为即使是几天的保质期延长也可能代表食品公司的重要经济优势。奶酪无疑是最多样化,最具挑战性的乳制品,以及蛋白质,脂质,必需矿物质(例如钙,镁和磷)和维生素的极好来源。应设计和开发奶酪的包装材料,以改善奶酪质量并防止损坏和变质。本综述着重于食用涂层及其在不同奶酪品种上的应用,以改善其保质期作为替代非生物降解的聚合物的替代品,并且已经讨论了可食用涂层的制备方法(浸入,喷涂,流化和平盘)。
摘要Acai的可食用冰淇淋主要在北部地区消耗,但是由于它涉及许多处理过程,因此该产品具有很大的微生物污染,因此在立法中没有建立好的实践时,风险会增加。因此,这项工作是为了评估在里约热内卢(Rio Branco)销售的Acai的可食用冰淇淋的微生物质量。拥有从不同商业机构收集的20个样本,被确定为A,B,C,E,G,H,I,I,J,K,K,L,M,M,N,N,O,P,P,P,R,S和T,使用肠杆菌和Escherichia coli的存在进行了推定和确认的测试,并使用多个小管的技术和10-10-10-10-10-10(10)根据2019年12月23日的第60号,样品被归类为可接受的,中间的和不可接受的。所有分析的样品均包含大肠疾病。大肠杆菌,变化<0.3.10μ至1.1.10³NMP/g,肠杆菌的变化为0.3.10μ至1.1.10³NMP/g。大多数分析的样本被归类为根据ANVISA的立法而被归类为不可接受的,这表明,通过将该产品污染了致病性微生物,表明了当地消费者的健康风险。关键字:可见的冰淇淋。acai。致病性微生物。
摘要:一种称为疫苗的生物制剂可为特定的感染或恶性疾病提供主动获得的免疫力。有多种疫苗品种,例如:灭活疫苗。实时侵入的免疫接种。mRNA(Messenger RNA)疫苗。疫苗接种包括亚基,重组,多糖和缀合物。具有特定疾病抗原的基因工程作物称为食用疫苗。由于疫苗的文化简单性,这降低了产品成本。由于它们不需要增强易感反应的辅助因素,因此可食用的疫苗是一种可行的免疫输送方法。在空置,存储,药物,产品和运输方面,食用疫苗也很经济。此类操作下的食物包括土豆,香蕉,生菜,大豆,大米,生菜,苹果,豌豆,豆豆,豆豆,樱桃番茄,苜蓿,西红柿,胡萝卜等。本综述着重于多年来可食用疫苗的开发以及随着技术的不断发展,其所拥有的各种监视。疫苗的演变导致发现了有效的新形式的疫苗接种形式,并涵盖了广泛的疾病。关键字:可食用疫苗,疾病,粘膜免疫系统。简介:疫苗是一种天然药物,旨在通过刺激抗体的产物来对投诉产生不罚。可被疫苗的疫苗用几种不可或缺的名称称为类似的食物疫苗,口服疫苗,亚基疫苗和绿色疫苗。每次具有传染性状况的人数超过一百万人死亡。他们觉得是一种可行的意志,尤其是对于穷人和发展中国家。最早开发的疫苗是爱德华·詹纳(Edward Jenner)在1796年由小咒语疫苗,随后是路易斯·帕斯特(Louis Pasteur)[1]继续进行的工作。共同的疫苗乘积包括四种主要方式,包括传播,绝缘,成圣和表达。感染哺乳动物宿主粘膜膜的病原体占这些疾病的50%[2]。疫苗的类型:
营养补充剂越来越多地生产并用于动物的营养益处,改善生理功能和增强健康[9,10]。例如,Li等人。[7]发现,用50 g l-citrulline补充Yili马的饮食增加了精氨酸和瓜氨酸的血浆浓度,从而改善了运动性能。可食用的鸟巢[EBN]是Swiftlet物种的唾液分泌物中的一种产品,是中国人中有价值的产品,由于其药物和营养特性,已被消耗了几个世纪,包括抗衰老,抗氧化,抗氧化,抗癌和抗炎[11,12]。EBN富含唾液酸(SA),它是一种具有代谢增强和抗氧化特性的生物成分,对马健康具有积极影响[12]。虽然营养补充剂通常用于增强赛马的健康和性能,但在阿拉伯种族种马中补充(EBN)补充的安全性和功效的研究有限,尤其是在减少运动引起的炎症和支持免疫功能方面。
植物基因组学领域取得了重大进展,高通量方法的使用越来越多,可以表征多个基因组范围内的分子表型。这些发现为植物性状及其潜在的遗传机制提供了宝贵的见解,特别是在模型植物物种中。尽管如此,有效地利用它们进行准确的预测是作物基因组改良的关键一步。我们提出了 AgroNT,这是一个基础性的大型语言模型,它以 48 种植物物种的基因组为训练基础,主要关注作物物种。我们表明,AgroNT 可以获得对调控注释、启动子/终止子强度、组织特异性基因表达的最新预测,并优先考虑功能性变异。我们对木薯进行了大规模的计算机饱和诱变分析,以评估超过 1000 万个突变的调控影响,并提供它们的预测效果作为变异表征的资源。最后,我们建议将此处汇编的各种数据集用作植物基因组基准 (PGB),为植物基因组研究中基于深度学习的方法提供全面的基准。预先训练的 AgroNT 模型可在 HuggingFace 上公开获取,网址为 https://huggingface.co/InstaDeepAI/agro-nucleo-transformer-1b,以供未来研究使用。