Loading...
机构名称:
¥ 4.0

植物基因组学领域取得了重大进展,高通量方法的使用越来越多,可以表征多个基因组范围内的分子表型。这些发现为植物性状及其潜在的遗传机制提供了宝贵的见解,特别是在模型植物物种中。尽管如此,有效地利用它们进行准确的预测是作物基因组改良的关键一步。我们提出了 AgroNT,这是一个基础性的大型语言模型,它以 48 种植物物种的基因组为训练基础,主要关注作物物种。我们表明,AgroNT 可以获得对调控注释、启动子/终止子强度、组织特异性基因表达的最新预测,并优先考虑功能性变异。我们对木薯进行了大规模的计算机饱和诱变分析,以评估超过 1000 万个突变的调控影响,并提供它们的预测效果作为变异表征的资源。最后,我们建议将此处汇编的各种数据集用作植物基因组基准 (PGB),为植物基因组研究中基于深度学习的方法提供全面的基准。预先训练的 AgroNT 模型可在 HuggingFace 上公开获取,网址为 https://huggingface.co/InstaDeepAI/agro-nucleo-transformer-1b,以供未来研究使用。

可食用植物基因组的基础大型语言模型

可食用植物基因组的基础大型语言模型PDF文件第1页

可食用植物基因组的基础大型语言模型PDF文件第2页

可食用植物基因组的基础大型语言模型PDF文件第3页

可食用植物基因组的基础大型语言模型PDF文件第4页

可食用植物基因组的基础大型语言模型PDF文件第5页

相关文件推荐

2025 年
¥1.0