摘要:通过减少二氧化碳纤维细纹来降低温室效应的必要性,指示食品包装技术使用生物基材料。藻酸盐是源自棕色藻类物种的,是开发能够保护食物免受氧化/细菌变质的可食用活性涂层的最有希望的生物聚合物之一。在这项研究中,藻酸钠用甘油塑化并与生物基的百里香醇/天然霍洛伊石纳米杂交混合,用于开发新型的可食用活性涂层。纳米复合材料也是通过将纯喇叭岩与藻酸钠/甘油基质混合并出于比较原因将其用作参考材料的。仪器分析表明,与纯藻酸钠/甘油基质相比,百里香/hoy虫纳米杂化与藻酸钠/甘油基质相比具有更高的兼容性。提高兼容性导致拉伸特性,水/氧屏障特性和总抗氧化活性。与未涂层的奶酪相比,这些可食用的活性涂层被应用于传统的希腊奶酪,并在一个log10单元(CFU/g)上显示中介微生物种群的减少。此外,随着梭子石和百里醇含量的增加,中嗜微生物种群的减少增加,表明这种藻酸钠/甘油/百里香醇/甲醇/hay虫水凝胶是奶牛产物的有希望的可食用的活性涂层。
本研究评估了13个本地南瓜种群的定量和定性性状。该实验是在随机块设计中进行的,具有3个复制(2019年至2020年)。在这项研究中考虑了以下特征:水果的数量,体重,长度,宽度和长度/宽度比,种子产量,种子产量/果实产量比,1000个种子体重,空种子的百分比,种子长度,种子宽度,种子仁/全种子/种子比和种子油百分比。此外,还进行了质量测试,包括使皮肤与内核的易于分离,味道质量以及种子形状和大小的可取性,从消费者的角度来看。方差分析显示大多数研究性状的显着差异。基于特征的平均比较结果,在Ghalami-Kalaleh#1和Mashhady-Azadshahr,然后是Mashhady-Khoy种群中观察到最高的种子产量。从消费者的角度来看,最高的口味质量属于Goushti-Kalaleh人口。结果代表了种子产量和果实之间的正相关和高度显着的相关性。在种子产量和其他相关性状之间未观察到没有显着相关性。建议在选择程序和修改高收益人群时考虑水果数字特征。
可食用的涂料是可生物降解且环境友好的,用于减少塑料包装。食品保质期的延长非常重要,因为即使是几天的保质期延长也可能代表食品公司的重要经济优势。奶酪无疑是最多样化,最具挑战性的乳制品,以及蛋白质,脂质,必需矿物质(例如钙,镁和磷)和维生素的极好来源。应设计和开发奶酪的包装材料,以改善奶酪质量并防止损坏和变质。本综述着重于食用涂层及其在不同奶酪品种上的应用,以改善其保质期作为替代非生物降解的聚合物的替代品,并且已经讨论了可食用涂层的制备方法(浸入,喷涂,流化和平盘)。
摘要 可食用疫苗由转基因植物和动物制成,含有免疫刺激剂。简单地说,可食用疫苗是由植物或动物产生的药物。在欠发达国家,口服疫苗更便宜,也更广泛可用。研究人员提出了可食用疫苗的概念,其中可食用的植物碎片被用作疫苗工厂。为了制造可食用的疫苗,科学家将所需的基因放入植物中,然后迫使植物产生基因中表达的蛋白质。转基因植物是转化的结果,而转化是转化植物的行为。可食用疫苗可促进粘膜免疫。肠道中的树突状细胞可以帮助天然 T 细胞激活并分化为滤泡 T 辅助细胞 (Tfh)。T 细胞和 B 细胞将对可靠、可消化的免疫做出精确反应。土豆、西红柿、香蕉、胡萝卜、烟草、木瓜、藻类和各种其他植物被用作标准疫苗的替代剂。疟疾、霍乱、肝炎、狂犬病、麻疹、轮状病毒、腹泻、癌症治疗和新冠肺炎治疗都是植物疫苗可以治疗的疾病。开发和销售可食用疫苗需要时间和奉献精神。许多用于治疗动物和人类疾病的可食用疫苗已经开发出来,并经过了不同程度的临床试验。本文强调了植物疫苗的重要性。关键词:可食用疫苗、转基因植物、植物疫苗、传染病、疫苗接种。
在 COVID-19 大流行期间,必须考虑食用和非食用物品的卫生问题,因为食用受感染的物品可能危害我们的健康。此外,所有东西在食用前都不能煮沸,因为煮沸会破坏水果和必需的矿物质和蛋白质。因此,迫切需要一种可以对食用物品进行消毒的智能设备。杀菌紫外线 C (UVC) 已被证明能够消灭任何物体表面的病毒和病原体。虽然几分钟的 UVC 照射就可以破坏或灭活病毒和病原体,但少量的 UVC 光可能会破坏食用物品的蛋白质,并影响水果和蔬菜。为此,我们提出了一种新颖的设备设计,该设备与人工智能和 UVC 一起使用,可以自动检测食用物品并采取相应措施。这会导致根据所提模型检测到的不同物品,根据其允许的限度,对它们施加有限的 UVC 剂量。此外,该设备采用智能架构,可将 UVC 光均匀分布在食物的整个表面上,从而保护食物的健康和营养。
水溶液在环境条件下会自我组装成胆汁脂液液晶,当水含量降至45 wt%左右时。[8,23,24]胆固醇相具有周期性的,螺旋纳米结构,由称为螺距P的物理距离定义,P,随着水的含量降低而减小。[17,23]当P处于可见光谱的长度尺度时,入射光以类似于Bragg-Reflection的方式选择性地反映,而HPC中间体显示出生动的金属色素(图1)。[25]观察到的颜色主要取决于所用的HPC类型和溶剂浓度。[9,17,26]但是,通过主动操纵胆固醇螺距,该颜色仍然可以动态控制后的形成。例如,施加宏观压力将压缩胆固醇相,在接触点减少p,并在视觉上导致局部和可逆的蓝调,[17]称为机械化合物。一种机械色素响应,结合了大规模生产,广泛的商业用途和人类消费认证,[27]为HPC提供了生物兼容性和具有成本效益的传感应用的巨大潜力。[17,18,28–30]然而,尽管最近的研究成功地将HPC的间相转化为完全固体的光子结构,例如通过化学交叉链接或HPC侧链的进一步功能化,[11,22,31]这导致动态色彩响应的丧失。因此,HPC机械化色性仅在迄今为止的液体制剂中报道。最后,我们在这项研究中,我们仅使用具有成本效益,生物相容性和广泛可用的原材料证明了机械色素HPC-GEL。我们表明,HPC-Gel可成型为连续未填充的固体,同时保留了剪切稀释的非牛顿反应,这对于液体加工而言是可取的。