环境和遗传危险因素及其相互作用对神经发育障碍(NDDS)的病因显着贡献。最近的流行病学研究已将拟除虫菊酯农药作为自闭症和发育延迟的环境风险因素。我们先前的研究表明,小鼠中低剂量的发育暴露于拟除虫菊酯农药三甲虫中,导致大脑和NDD相关行为的男性偏见变化。在这里,我们使用了代谢组学方法来确定由低剂量拟除虫菊酯暴露在发育过程中导致成年男性小鼠脑中最广泛的代谢变化集。使用基于垃圾的设计,我们在怀孕期间将小鼠大坝暴露于三分球蛋白(每3天3 mg/kg或车辆),浓度低于用于调节指导的EPA确定的基准剂量。我们将男性后代提高到了成年,并收集了整个大脑样本,以进行不可靶的高分辨率代谢组学分析。发育暴露的小鼠在116个代谢产物中受到破坏,这些代谢物聚集在叶酸生物合成,视黄醇代谢和色氨酸代谢中。作为交叉验证,我们从同一样品中整合了代谢组学和转录组学数据,这证实了先前的多巴胺信号传导的发现。这些结果表明,发育过程中的拟除虫菊酯暴露会导致成人大脑中叶酸代谢的破坏,这可能会为预防和治疗策略提供依据。
为此,接受了以下签名:收缩的电子签名,并指的是证明电子签名与特定人员链接的虚拟文档;数字类型可以由Adobe以真实的方式生成;仅当签名清晰时,签名类型才会被接受,而在图像中没有证明它没有背景并且是透明的。
1 华盛顿大学医学院病理学和免疫学系,密苏里州圣路易斯 63110,美国 2 印第安纳大学布卢明顿分校流行病学和生物统计学系,印第安纳州布卢明顿 47405,美国 3 阿肯色大学医科学院儿科系出生缺陷研究分部,阿肯色州小石城 72205,美国 4 阿肯色大学医科学院儿科系生物统计学项目,阿肯色州小石城 72205,美国 5 韦恩州立大学妇产科系,密歇根州底特律 48202,美国 6 亚利桑那大学医学院儿童健康系,亚利桑那州菲尼克斯 85004,美国 7 菲尼克斯儿童医院巴罗神经学研究所神经内科、神经发育障碍科室,亚利桑那州菲尼克斯 85016,美国 8 中心公共卫生和医学基因组学,RTI International,北卡罗来纳州三角研究园 27709,美国 9 拉迪儿童基因组医学研究所,拉迪儿童医院,加利福尼亚州圣地亚哥 92123,美国 * 通讯地址:chobbs@rchsd.org † 以前的地址:阿肯色大学医科学院和阿肯色州儿童研究所儿科系出生缺陷研究部,阿肯色州小石城 72205,美国。‡ 这些作者对这项工作做出了同等贡献。§ 国家出生缺陷预防研究的成员资格在致谢中提供。
Johann De Bono 本手稿的所有支持(例如资金、提供研究材料、医学写作、文章处理费等)- CT900/ONX-0801/BCG945 由癌症研究所发现。 JDB 是癌症研究所的一名员工。来自任何实体的资助或合同 - 安进、阿斯利康、默克夏普 Dohme Corp、安斯泰来、拜耳、Bioxcel Therapeutics、勃林格殷格翰、Cellcentric、大一、卫材、基因泰克/罗氏、Genmab、葛兰素史克、Harpoon、ImCheck Therapeutics、杨森、默克雪兰诺、美纳里尼/Silicon、默沙东、BIosystems、Orion、辉瑞、Qiagen、赛诺菲、Aventis、Sierra Oncology、Taiho、Terumo、Vertex Pharmaceuticals 特许权使用费或许可证 - 阿比特龙 - 对阿比特龙有商业利益的 ICR - 无个人收入 - PARP 抑制 - 无个人收入 - P13K/AKT - 无个人收入 咨询费 - 安进、阿斯利康、默克夏普 Dohme
甲氨蝶呤是一种叶酸拮抗剂。2 四氢叶酸是叶酸的活性形式,是嘌呤和胸苷酸合成所必需的。叶酸被二氢叶酸还原酶 (DHFR) 还原为四氢叶酸。甲氨蝶呤的细胞毒性来自三种作用:抑制 DHFR、抑制胸苷酸和改变还原叶酸的转运。3 抑制 DHFR 会导致胸苷酸和嘌呤缺乏,从而导致 DNA 合成、修复和细胞复制减少。3 DHFR 对甲氨蝶呤的亲和力远大于其对叶酸或二氢叶酸的亲和力,因此同时给予大剂量叶酸不会逆转甲氨蝶呤的作用。 2 然而,如果在甲氨蝶呤后不久服用四氢叶酸衍生物亚叶酸钙,则可能会阻断甲氨蝶呤的作用,因为它不需要 DHFR 来激活。2 中等剂量 (> 100 mg/m 2 ) 至高剂量甲氨蝶呤 (> 1000 mg/m 2 )4 加亚叶酸救援通常用于癌症治疗。3 甲氨蝶呤对快速增殖细胞最有效,因为细胞毒作用主要发生在细胞周期的 S 期。3 甲氨蝶呤还具有免疫抑制活性,可能是由于抑制淋巴细胞增殖。5
叶酸很重要,因为它可以帮助预防大脑和脊柱的重大先天缺陷。在怀孕前和怀孕期间,确保每天摄入 400 微克叶酸。叶酸以维生素形式存在,也存在于许多强化食品中,如面包和谷类食品。此外,各种健康食品中都天然含有叶酸。
叶酸代谢与体内代谢的维持之间存在可能的关系。这项研究的结果表明,从青春期前时期开始补充叶酸的能力可以增加大鼠体重,从而证实了使用我们实验室的成年小鼠的早期研究[11],它也证明体重的增加并不伴随着诸如Glucose,胰岛素,胰岛素,胰岛素和乳蛋白等新陈代谢标志物的破坏。这也证实了评估肉鸡叶酸补充作用的研究结果,并报告说,在5 mg.kg的情况下补充叶酸与平均体重的增加和肥胖降低有关[54]。缺乏代谢危险(如本研究中所观察到的)或叶酸补充后的肥胖使这项研究中观察到的体重增加与报道人的叶酸缺乏或动物的叶酸不足饮食的报道[52,53,55]。这项研究的结果还表明,叶酸具有提高饲料转化效率的能力,支持了许多研究,这些研究也报告了叶面补充饮食后体重和饲料转化效率的提高[54,56]。
Johann De Bono 本手稿的所有支持(例如资金、提供研究材料、医学写作、文章处理费等)- CT900/ONX-0801/BCG945 由癌症研究所发现。 JDB 是癌症研究所的一名员工。来自任何实体的资助或合同 - 安进、阿斯利康、默克夏普 Dohme Corp、安斯泰来、拜耳、Bioxcel Therapeutics、勃林格殷格翰、Cellcentric、大一、卫材、基因泰克/罗氏、Genmab、葛兰素史克、Harpoon、ImCheck Therapeutics、杨森、默克雪兰诺、美纳里尼/Silicon、默沙东、BIosystems、Orion、辉瑞、Qiagen、赛诺菲、Aventis、Sierra Oncology、Taiho、Terumo、Vertex Pharmaceuticals 特许权使用费或许可证 - 阿比特龙 - 对阿比特龙有商业利益的 ICR - 无个人收入 - PARP 抑制 - 无个人收入 - P13K/AKT - 无个人收入 咨询费 - 安进、阿斯利康、默克夏普 Dohme
irinotecan(IRN)是camptothecin的半合成衍生物,充当拓扑异构酶I抑制剂。irn在全球范围内用于治疗几种类型的癌症,包括大肠癌,但是其使用可能导致严重的不良反应,例如腹泻和骨髓抑制。脂质体被广泛用作药物输送系统,可以改善化学治疗活性并降低副作用。脂质体也可以在酸性环境(如肿瘤)中优先释放其含量,并以靶向目的进行表面官能化。在此,我们开发了一种叶酸涂层的pH敏感脂质体作为药物输送系统,以使IRN达到改善的肿瘤疗法,而无需潜在的不良事件。脂质体,含有IRN,并针对粒径,多分散性指数,Zeta电位,浓度,封装,细胞摄取和释放曲线进行了炭化。在大肠癌的鼠模型中研究了抗肿瘤活性,并通过血液学/生化测试和主器官的组织学分析评估其毒性。结果显示,小于200 nm的囊泡,几乎没有分散,表面电荷接近中性,高包装速率超过90%。该系统以pH值依赖性方式显示出延长和持续的释放,并具有高细胞内药物输送能力。重要的是,叶酸涂层的pH敏感制剂的抗肿瘤活性明显优于pH依赖性系统或游离药物。含有IRN的组的肿瘤组织呈现大量坏死。肿瘤组织呈现大量坏死。此外,没有发现对所研究组的全身毒性的证据。因此,我们开发的纳米果IRN递送系统可能是传统结直肠癌治疗的一种替代方法。