版权所有©2024 Frontiers社论。这是根据Creative Commons归属许可(CC BY)的条款分发的开放式文章。允许在其他论坛上使用,分发或复制,前提是原始作者和版权所有者被记住,并且根据公认的学术实践,请引用本期刊中的原始出版物。不允许使用,分发或复制,不符合这些条款。
本手稿全面回顾了精子干细胞(SSC)和JAK/STAT信号通路之间的相互关系。男性哺乳动物睾丸中的精子干细胞,其特征在于其自我再生和多能分化能力,对于组织再生,免疫调节和再生医学的进步至关重要。本评论深入研究了SSC的历史背景和生物学特征,特别着重于JAK/STAT信号通路在其增殖,成熟和分化过程中的关键作用。研究表明,JAK/STAT途径广泛影响精子干细胞的各种功能,包括免疫调节,组织分化,归巢和对微环境的适应性。在此,我们对相关研究进行了整理和剖析,阐明了SSC和JAK/STAT信号通路之间的复杂动力学,并检查了这些相互作用对SSC的生物学属性和功能的含义。此外,审查讨论了这些发现对临床前研究和细胞工程领域的深刻含义。人们承认,尽管SSC的研究和JAK/STAT信号途径进行了进步,但对人类和较大哺乳动物的调查仍然不足,需要更深入的探索来建立一个全面的理论框架。总的来说,这篇综述提供了一个宝贵的参考,用于解密精子干细胞信号通路的机制,并为相关的临床前研究建立了理论基础。
引言TYK2是激酶的JAK家族的成员,它结合了IL-12,IL-23和I型IFN受体,以募集和磷酸化信号转录器以及转录(STAT)转录因子的激活(STAT)。功能变异的丧失在自身免疫性疾病中具有保护性,而TYK2的变构抑制剂(Deucravacitinib)以及针对IL-12,IL-23和IFN-α的生物学剂已批准用于治疗多种自身免疫性疾病,使TYK2的治疗方法是具有极具吸引力的目标。tyk2,p1104a的常识变体,使蛋白质催化无效的蛋白质仍然支持通过I型IFN途径的信号传导,这表明抑制I型IFN需要阻止脚手架函数。此外,批准或临床发育中的TYK2抑制剂尚未在临床相关剂量时显示出完全靶标的抑制作用。
fi g u r e 1重组转化生长因子-β(TGF-β)I型和II受体(TβRI-TβRIII)-FC蛋白抑制TGF-β诱导的上皮上皮 - 间质转化(EMT)和SAS口服癌细胞的迁移。(a,b)(a)上皮细胞标记claudin-1和(b)在未经( - )或TGF-β1(Tβ1),TGF-β2(tgf-β2(tβ2)或TGF-β3(TGF-β3(TGF-β3(tgf-β3)中,tgf-β3(tβ3)(tgf-β3)(tgf-β3)(tgf-β3)(tgf-β3)(2 ng)的SAS细胞中,(tgf-β1)(tgf-β1)(tgf-β1)中的相对表达β信号抑制剂SB431542(10μM)或重组FC蛋白(对照FC,TβRII-FC或TβRI-TβRII-FC)持续72 h。 TGF-β介导的EMT的诱导是由Claudin-1降低50%和波形蛋白表达增加的50%定义的。所有数据均标准化为β-肌动蛋白的表达。n = 3。(c)未经(对照)或TGF-β1,TGF-β2或TGF-β3(2 ng/ml)的细胞进行免疫细胞化学分析,在存在重组FC蛋白(Control-FC,TβRII-FC,TβRII-FC,或TβRII-TβRI-TβRIII-FC)的情况下。染色E-钙粘蛋白(绿色),波形蛋白(红色)和核(蓝色)。在指定条件下培养的细胞的代表性图像。n = 3。(d)在存在控制FC或TβRI-TβRII-FC蛋白的情况下,未经(对照)或TGF-β2(2 ng/ml)处理的SAS细胞的迁移。代表性图像和迁移细胞的定量。n = 3。所有数据均显示为平均值±SD。比例尺:(c)50μm; (d)100μm。统计分析:双向方差分析; * p <0.05; ** p <0.01; *** p <0.001; **** p <0.0001。 NS,并不重要。
参议院关于使用人工智能工具和学术诚信的决议鉴于第 5 条第 41301 款和加州社区学院校长办公室法律意见 07-12 和 95-31 号通过概述学术和职业道德及纪律处分来促进学术诚信并旨在阻止学术不诚实行为;鉴于教育法典 76224(a) 规定,在没有错误、欺诈、恶意或不称职的情况下,教师对成绩确定拥有最终决定权;鉴于人工智能 (AI) 进步神速,OpenAI 的 ChatGPT、人工智能驱动的 Bing 和谷歌的 Bard 等生成技术已经创造出强大的工具,学生可以借此对非个人努力的查询生成强有力的答案,并可能导致与学术诚信有关的潜在问题和道德困境;鉴于,众多学术部门和项目已经认识到生成式 AI 工具的变革潜力,并积极引导学生负责任且合乎道德地使用这些工具;鉴于,与此相反,有些学术部门和项目主张彻底禁止生成式 AI 工具,并对其对学术诚信和教育过程的潜在影响表示担忧;鉴于,塞里托斯学院缺乏专门针对和规范生成式 AI 工具使用的全面政策;鉴于,学生未经授权和不当使用生成式 AI 工具的现象日益普遍。塞里托斯学院教务委员会确认,接受或拒绝集成生成式 AI 工具的决定仍由个别教师自行决定。进一步决议:参议院要求将以下不诚实行为的例子纳入学区的官方学术诚信/不诚实政策中:
背景:胆管癌 (CCA) 是仅次于肝细胞癌的第二大常见肝胆管癌,预后差且治疗选择有限。本研究旨在回顾有关 CCA 遗传基础、发病机制、疾病进展和预后的分子靶点/信号通路的现有知识,包括 CCA 靶向治疗的潜在靶点。方法:系统评价按照 PRISMA 指南进行。使用以下关键词在 PubMed 和 Science Direct 数据库中进行系统搜索:“胆管癌”和“分子靶点”和/或“信号通路”和/或“靶向治疗”和/或“癌症化疗”。资格标准包括:i) 以英文发表的全文文章,ii) 包含与 CCA 发病机制/疾病进展/预后和/或靶向治疗相关的分子靶点/信号通路的体外和/或体内和/或临床研究的文章。最终,符合资格标准的 73 项研究被纳入最终数据综合。结果:截至 2022 年 4 月,共确定了 833 篇相关文章,最终将符合资格标准的 73 项研究纳入分析。报告了针对信号通路的分子生物标志物和药物。最近的研究集中在针对凋亡和细胞增殖途径,以及血管生成和转移途径。更多的努力集中在测试联合疗法对癌细胞和特别是 CCA 的疗效上。PI3K(磷酸肌醇 3-激酶)/ERK/Akt(AKT 丝氨酸/苏氨酸激酶 1)/mTOR(雷帕霉素的哺乳动物靶点)信号通路和 HER2(人类表皮生长因子受体 2)和 EGFR(表皮生长因子受体)通路是 CCA 治疗最有潜力的靶点。结论:所获得的信息可用于进一步开发 CCA 早期诊断的诊断工具以及有效的 CCA 靶向治疗方法。
摘要35蛋白质泛素化的精确控制对于大脑发育至关重要,因此,泛素信号网络的破坏36可能导致神经系统疾病。37个去泛素酶USP7的突变导致HAO-Fountain综合征(HAFOUS),其特征是38个发育延迟,智力残疾,自闭症和侵略性行为。在这里,我们报告了39个小鼠前脑中兴奋性神经元中USP7的条件缺失触发了40种表型,包括感觉运动缺陷,学习和记忆力障碍以及侵略性的41个行为,类似于Hafous的临床特征。USP7缺失诱导神经元细胞凋亡的42依赖性肿瘤抑制剂p53。然而,尽管损失了p53,但43个USP7条件小鼠的大多数行为异常仍然存在。引人注目的是,大脑中的USP7缺失44突触蛋白质组和树突状脊柱形态发生独立于p53。综合45蛋白质组学分析表明,神经元USP7相互作用富含与神经发育疾病有关的蛋白质46,并专门鉴定了RNA剪接因子47 PPIL4作为USP7的新型神经元底物。皮质神经元中PPIL4的敲低会损害48个树突状棘的形态发生,表现USP7损失对树突状棘的影响。49这些发现揭示了一种新型的USP7-PPIL4泛素信号传导链接,该联系调节发育中的大脑中的神经元50连通性,这对我们对Hafous和其他神经发育障碍的发病机理51的理解产生了影响。52 53关键字54泛素,去泛素酶,USP7,HAO-Fountain综合征,p53,脑发育,55谷氨酸能神经元,突触,TMT蛋白质组学,PPIL4 56 56 57 58 59 59
两种DNA修复途径,非同源末端连接(NHEJ)和替代末端连接(A-EJ),参与V(d)J重组和染色体易位。先前的研究报告了染色体易位的不同修复机制,NHEJ主要参与小鼠的人类和A-EJ。nhej取决于DNA-PKC,这是突触形成和下游成分激活的关键伴侣。虽然DNA-PKC抑制作用促进了具有小鼠微论的染色体易位,但其在人类中的同义效应尚不清楚。我们发现人类细胞中的部分DNA-PKC抑制会导致易位增加,并持续参与抑制的NHEJ。相比之下,完全增加了微学介导的末端连接(MMEJ),因此完全增加了DNA-PKC,从而弥合了人与小鼠之间的两种不同的易位机制。与先前关于KU70缺失的研究类似,G1/G0相小鼠祖细胞B细胞系中的DNA-PKCS缺失显着损害V(d)J重组,并由于编码失调和信号终端连接而产生了更高的易位速率。遗传DNA-PKC抑制完全抑制了NHEJ的参与,其表型上的修复类似于KU70缺乏的A-EJ。相比之下,我们发现在产生与Lig4缺乏相关的近乎异常的MMEJ时,DNA-PKCS所需的DNA-PKC。我们的研究强调了DNA-PKC抑制非法染色体重排,同时也有助于这两种物种的MMEJ。
CC 趋化因子配体 5 (CCL5) 是 CC 基序趋化因子家族的成员,该家族还包括巨噬细胞炎症蛋白 1 α (MIP-1 α ) 和巨噬细胞炎症蛋白 1 β (MIP-1 β ) (10-12)。CCL5 具有高亲和力,主要与其受体 CC 趋化因子受体 5 型 (CCR5) 以及 CCR1、CCR3、CCR4、CD44 和 GPR75 (13-15) 结合。CCL5 还通过激活核因子 κ -轻链增强子 (NF- κ B) 参与 B 细胞增殖 (16)。该蛋白在 T 淋巴细胞、巨噬细胞、血小板、滑膜成纤维细胞、小管上皮细胞和肿瘤细胞中表达 (17)。根据最近的研究,CCL5通过增强肿瘤转移(18)和重塑细胞外基质来促进肿瘤进展,从而支持肿瘤干细胞扩增(19),导致肿瘤细胞产生耐药性(20),降低DNA损伤因子的细胞毒性,减轻细胞代谢重编程(21),增加血管生成,动员免疫细胞(22),诱导巨噬细胞极化以抑制免疫反应(23)。然而,CCL5在BC中的潜在机制仍不清楚。
摘要肾细胞癌(RCC)是最普遍的肾癌类型,是全球癌症发病率和死亡率的重要原因。抗血管生成的酪氨酸激酶抑制剂(TKI)与免疫检查点抑制剂(ICIS)结合使用,是晚期RCC患者的一线治疗选择之一。这些疗法靶向血管内皮生长因子受体(VEGFR)酪氨酸激酶途径和其他对癌症增殖,生存和转移至关重要的激酶。tkis已为晚期RCC患者的无进展生存率(PFS)和总生存期(OS)提供了大幅改善。然而,随着耐药性的发展,几乎所有患者最终都会在这些药物上进展。这篇综述提供了RCC中TKI抗性的概述,并探讨了抗药性的不同机制,包括上调替代性促肌血管生成途径,上皮 - 间质转变(EMT),降低了由于外排泵和溶酶体序列的细胞内细胞内药物浓度的降低,包括裂解和溶酶体的细胞和肿块microderctions and tumor bormoRement and tumrand tumrand bornviron(byr rondvirrend and tumranvirrend and rok ronr mar row row row row rownvirrem arr row row row row narr arr row row row。肿瘤相关的成纤维细胞(TAF)和遗传因素,例如单核苷酸多态性(SNP)。对这些机制的全面理解为可以有效克服TKI耐药性的创新治疗方法的发展打开了大门,从而改善了晚期RCC患者的结局。