3D 打印是一种成熟的增材制造技术,它通过连续添加几何材料层来创建所需的对象。该技术通常通过熔融沉积成型 (FDM) 方法实现,其中添加的材料(称为长丝)首先被熔化,然后沉积以形成一层薄薄的新材料,该新材料在制造过程中与之前的层融合。长丝类型包括传统的聚乳酸 (PLA) 塑料长丝以及注入了不同添加剂(如碳纤维、石墨、金属颗粒等)的更先进的材料。与传统 PLA 相比,这些特种长丝主要具有独特的机械性能。然而,在这些特种长丝中加入不同的添加剂也会改变它们的电磁特性。
摘要。印刷电路板 (PCB) 是环氧树脂浸渍和固化的反编织玻璃纤维 (例如 FR4) 板,层压在薄铜板之间。PCB 的性质本质上是各向异性和不均匀的,但之前的 PCB 模态 FEM 假设了各向同性、各向异性 (横向各向同性和正交各向异性) 材料特性,并显示出与特定场景的测试数据有良好的相关性 [1-3]。本文详细介绍了一项研究计划的一部分,旨在更好地理解如何准确模拟 PCB 的动态行为。分析了材料各向异性的影响的新研究,特别是材料正交平面定义 (𝐸 ௫ 和 𝐸 ௬ ) 对特征频率的影响。使用 Steinberg 完善的理论和其他人的经验数据 [4, 5] 创建、验证和确认了 JEDEC PCB 的模态 FEM。使用参数模态 FEM 检查了 𝐸 ௫ 、𝐸 ௬ 和 𝐸 ௭ 对 PCB 特征频率的相对贡献,分析了材料各向同性和各向异性的作用。还分析了典型 JEDEC PCB 的横向各向同性材料特性的影响。此分析详细说明了准确建模 PCB 特征频率所需的网格密度。结果表明,𝐸 ௭ 增加 100% 只会导致特征频率差异 0.2%,而 𝐸 ௬ 增加 100% 会导致特征频率差异 1.2%。正交各向异性平面定义(交替使用 𝐸 ௫ 和 𝐸 ௬ )对 JEDEC PCB 的影响使特征频率发生了 7.95 % 的偏移。
由于复合结构材料对航空航天工业和林业产品工业的重要性日益增加,这些材料的各向异性特性这一主题值得特别关注。材料的各向异性当然意味着其基本机械性能在三个垂直方向上有很大差异。最近与木材一起被归入这一类别的人造材料包括玻璃纤维、金属基纤维复合材料、夹层结构和强化复合材料。在 ASTM 材料科学部的赞助下,举办了一次研讨会,讨论此类材料的增强组分的取向对各向异性复合材料机械行为的性质和影响。其中几篇论文从纯理论和数学的角度考虑了纤维介质的力学和材料正交各向异性的影响。随后的论文分别集中讨论一种特定类型的各向异性材料,借鉴最近的实验和观察结果,阐明了一些基本原理。作者均为各自领域的知名综合专家,代表了政府、私人和教育机构或实验室的各界人士。
我们报告了RBCA 2 Fe 4 AS 4 F 2的3.5 MeV质子照射的影响,4 F 2是一种基于铁的超导体,在Pnictides和Pnictides和Cuprate高温超导体之间具有不寻常的特性。我们研究了由离子轰击引入的结构障碍如何通过结合共面波导谐振技术,电动传输测量和点接触Andreev-Refrespection光谱光谱来影响临界温度,超流体密度和间隙值。与在可比的辐射条件下相比,与其他基于铁的超导体相比,超导性能对该材料中的疾病量的异常弱依赖性。原始rbca 2 Fe 4 AS 4 F 2展示的节点多图态也对质子辐照也很健壮,其中两种频带D -d模型是最能拟合实验数据的模型。
最新的纳米印刷谱依赖于13.5 nm极端紫罗兰色(EUV)光,这些光(EUV)是由Tin激光生产的等离子体(LPP)产生的。1–3热和致密的锡血浆的扩展可能会以多种方式阻碍EUV源操作,在这种方面,高能离子可能会损坏或涂上EUV euv光学元件。4,5有效缓解方案是消除这种不良过程的EUV来源所必需的。这些缓解方案可能包括使用缓冲气体停止和去除离子碎片6,7或使用强磁场将其转化为脱离等离子收集器镜子的情况。5,8–11在没有任何形式的缓解形式的情况下,理解驱动血浆扩展的机制而有益于理解驱动血浆扩展的机制。血浆扩展到真空12–14的分析模型已经开发了多年,并且已应用于TIN激光生产的血浆扩展的特定情况。最近15,16,Hemminga等。17进行了二维(2D)辐射流动力学模拟,从激光辐照的锡液滴中进行了血浆扩展,因为发现强烈简化的分析模型无法完全捕获扩张。采用单流体单温方法的模拟与从A
在科学计算中,网格被用作所考虑的数值方法的离散支持。因此,网格极大地影响了数值方法的效率、稳定性和准确性。各向异性网格自适应的目标是生成适合应用和数值方案的网格,以获得最佳解决方案。因此,这是一个活跃的研究领域,正在不断进步。这篇评论文章提出了自 2000 年以来 INRIA Gamma3 团队在应用于计算流体动力学中无粘性流动的各向异性网格自适应领域的研究活动的综合。它展示了这一时期理论和数值结果的演变。最后,讨论了未来十年的挑战。
电阻是衡量电流流过材料时遇到的阻力大小的一种量度。在某些材料中,这种阻力还取决于施加在材料上的磁化强度和方向。这种现象称为各向异性磁阻 (AMR)。1856 年,苏格兰物理学家开尔文勋爵通过对铁和镍等铁磁金属进行实验首次观察到了这种现象[1]。他发现,当磁力方向垂直于电流时,电阻减小,而当磁力方向一致时,电阻增大。AMR 的应用可以在自旋电子学中找到,这是一项固态技术,其中电子自旋可以被操纵以产生有用的特性。自旋电子学用于各种技术,例如车辆中的导航系统和用于数据存储的硬盘[2]。