支持AI的合成生物学具有巨大的潜力,但也显着增加了生物风格,并带来了一系列新的双重使用问题。鉴于通过结合新兴技术所设想的巨大创新,随着AI支持的合成生物学可能将生物工程扩展到工业生物制造中,因此情况变得复杂。但是,文献综述表明,诸如保持合理的创新范围或更加雄心勃勃的目标以促进巨大的生物经济性不一定与生物安全对比,但需要齐头并进。本文介绍了这些问题的文献综述,并描述了新兴的政策和实践框架,这些框架横渡了指挥和控制,管理,自下而上和自由放任的选择。如何实现预防和缓解未来AI支持的Biohazards,故意滥用或公共领域的预防和缓解未来的生物危害的方法,将不断发展,并且应不断发展,并且应出现自适应,互动方法。尽管生物风格受到既定的治理制度的约束,而且科学家通常遵守生物安全方案,甚至实验性,但科学家的合法使用可能会导致意外的发展。生成AI实现的聊天机器人的最新进展激起了人们对先进的生物学见解更容易获得恶性个人或组织的恐惧。鉴于这些问题,社会需要重新考虑应如何控制AI支持AI的合成生物学。建议可视化手头挑战的建议方法是whack-a摩尔治理,尽管新兴解决方案也许也没有那么不同。
心肌和心律不齐的纤维化变化代表系统性硬化症(SSC)的致命并发症,但是基本机制仍然难以捉摸。小鼠过度表达转录因子FOSL-2(FOSL-2 TG)代表SSC的动物模型。Fosl-2 tg mice showed interstitial cardiac fi brosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks并降低了人力资源变异性。用异丙肾上腺素FOSL-2 TG小鼠刺激后,HR反应受损。与FOSL-2 TG相比,免疫dim dim rag2 - / - fosl-2 tg小鼠受到增强的心肌纤维化和ECG异常的保护。转录组学分析表明,FOSL-2-ERVERSESS是造成心脏纤维细胞的纤维性特征的原因,而FOSL-2 TG小鼠中的炎症成分激活了它们的纤维性和心律失常的作用表型。在人类心脏纤维细胞中,FOSL-2超过表达增强了肌纤维细胞的签名,在proinmotal或pro粘连刺激下。这些结果表明,在免疫性条件下,转录因子FOSL-2夸大了肌纤维纤维肌,心律不齐和对压力的异常反应。
1性别因素5000 2 0 0 2人的年龄,2011年数字5000 79 0 0 3年龄段,2011因子5000 7 4 0是是。。。7的EDUSPEC纪律完整资格因子5000 28 20 0是。。。10 income Personal monthly net income numeric 5000 407 683 603 11 marital Marital status factor 5000 7 9 0 12 mmarr Month of marriage numeric 5000 13 1350 0 13 ymarr Year of marriage numeric 5000 75 1320 0 14 msepdiv Month of separation/divorce numeric 5000 13 4300 0 15 ysepdiv Year of separation/divorce numeric 5000 51 4275 0 .。。22 Nofriend的朋友数字数字5000 44 0 41 23吸烟烟因子5000 3 10 0 24 Nociga每天抽烟数字5000 30 0 3737是的。。。27在2007 - 2011年出国工作的工作塔因子5000 3 438 0 28 WKABDUR在国外工作的总时间5000 33 0 4875是。。。33人数的高度5000 65 35 0 34人数重量的重量5000 91 53 0 35 BMI体重指数(重量-kg/(高度-cm 2)*10000)数字5000 1396 59 0是是是是是
图 6 示例性注意力矩阵,可视化三位参与者在收敛时的注意力得分(来自随机选择的训练样本)(值越亮表示注意力得分越高)。解码器中的时间步长在 y 轴上表示,编码器的时间步长在 x 轴上表示。对角线结构表明注意力得分在时间域上是很好地对齐的,例如输出中的后续步骤关注输入中的后续步骤。该图还表明,填充输入 sEEG 序列(语音规划和理解)可能是不必要的,因为没有太多注意力放在第一个和最后一个输入步骤上。
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,则使用记录页面上找到的永久性URI(句柄)来引用TSPACE版本。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做出了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非在资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http:// creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativecommons.org/publi cdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
癌症疗法的发展受到合适药物靶点的限制。可以根据合成致死率 (SL) 的概念来识别潜在的候选药物靶点,SL 指的是基因对,对于这些基因对来说,单独一个基因的畸变不会致命,但畸变同时发生则会对细胞造成致命影响。在这里,我们介绍了 SLIdR(R 中的合成致死率识别),这是一个用于从大规模扰动筛选中识别 SL 对的统计框架。即使样本量很小,SLIdR 也能成功预测 SL 对,同时最大限度地减少假阳性靶点的数量。我们将 SLIdR 应用于 Project DRIVE 数据,并找到已建立和潜在的泛癌症和癌症类型特异性 SL 对,这与文献和药物反应筛选数据的结果一致。我们通过实验验证了肝细胞癌中预测的两种 SL 相互作用(ARID1A-TEAD1 和 AXIN1-URI1),从而证实了 SLIdR 识别潜在药物靶点的能力。
合成生物学改变了我们感知生物系统的方式。该领域的新兴技术影响了科学和工程学的许多学科。传统上,合成生物学方法通常旨在开发具有成本效益的微生物细胞工厂,以从可再生能源产生化学物质。基于此,合成生物学对环境的直接有益影响来自减少我们的石油de denency。但是,合成生物学开始在环境保护中发挥更直接的作用。行业和农业释放的有毒化学物质危害环境,破坏了生态系统平衡和生物多样性损失。本评论突出了合成生物学方法,可以通过提供能够感测和响应特定污染物的补救系统来帮助环境保护。讨论了基于基于基因工程的微生物和植物的补救策略。此外,提出了促进合成生物学工具在环境保护中设计和应用的计算AP概述。
为了推进基于学习的融化算法的研究,已经开发了各种合成雾数据集。但是,现有的数据集使用大气散射模型(ASM)或十个实时渲染引擎而努力产生光真实的雾图像,以准确模仿实际的成像过程。这种限制阻碍了模型从合成到真实数据的有效概括。在本文中,我们引入了旨在生成照片现实的雾图图像的端到端模拟管道。该管道全面构建了整个基于物理的雾化场景成像,与现实世界图像捕获的方法紧密相位。基于此管道,我们提出了一个名为Synfog的新合成雾数据集,该数据集具有天空和主动照明条件以及三个级别的雾气状态。实验结果表明,与其他人相比,在与其他模型中相比,与其他人相比,在synfog上训练的模型在视觉感知和检测准确性方面表现出了较高的性能。
0009-0000-3805-9735 https://orcid.org/0009-0000-3805-9735,vipet103@uni-duesseldorf.de https://orcid.org/orcid.org/0009-0009-0009-0009-0009-8999999999999999999999-DEARELD https://orcid.org/0009-0006-6743-0904,tobias.finkenrath@hhu.de.de https://orcid.org/0009-0009-50007-5319-563X https://orcid.org/0000-0002-3523-2907,matias.zurbriggen@uni-duesseldorf.de https://orcid.org/000000-0000-0000-0000-7975-5013,urquizag@hhu.de artifortions:1)德国杜塞尔多夫2)德国植物科学卓越群体 *相应的作者关键词:植物合成基因组学,生物设计自动化,植物学,植物托布里克,金门,随机DNA。