描述环蛋白最初被鉴定为鼠肿瘤细胞系NIH3T3/克隆T7的条件培养基中的生长抑制因子。它属于包括EGF,TGF-α,肝素结合EGF类似增长因子(HB-EGF),Epigen,Epigen,epiregulin,betacellullulin,neuroRegulin和pyororegulin的EGF家族。它与其他与EGF相关的生长因子的序列占24-50%的氨基酸序列同一性。所有EGF家族成员均被合成为I型膜蛋白前体,它们可以在质膜上进行蛋白水解裂解,以释放成熟的可溶性异构域。epiregulin充当人表皮角质形成细胞中的自分泌生长因子,可以由HB-EGF,Amphiregulin和TGF-α诱导。epiregulin由角质形成细胞和组织驻留巨噬细胞的免疫相关反应中表达,并发挥关键作用。已经表明,上环蛋白缺陷型(EP - / - )小鼠会出现慢性皮炎。此外,环保蛋白参与骨髓来源的巨噬细胞中促炎细胞因子的产生。此外,环保蛋白诱导人角膜上皮细胞的增殖,其表达可以通过TGF-α,HB-EGF,AR和EGF在这些细胞中诱导。epiregulin在中耳胆道瘤发病机理期间在高乳突发育中起作用,并且在银屑病表皮中过表达。上环蛋白多态性似乎与对TB的不同临床表型的敏感性有关,而环保蛋白则调节结核病的先天免疫反应。
高通量遗传筛选经常用于与表型快速关联并建立序列功能关系。随着CRISPR技术的出现,可以使用合并的指南RNA(GRNA)库和基于测序的测定法对非模型生物进行功能询问以前的遗传性顽固生物,以定量评估并行的每个靶向轨迹。为了帮助构建合并的GRNA组件,我们使用GRNA序列区域提取工具(GRNA-Seqret)开发了用于GRNA选择的硅设计工作流。基于先前开发的CCTOP,GRNA-Seqret启用了针对用户规范区域的GRNA库的自动化,可扩展的设计,或任何原核生物或真核生物的整个基因组。此外,GRNA-Seqret相对于基因或其他特征的任何序列区域的批量提取自动化,有助于插入或缺失构建体的同源臂设计。我们还在计算机中评估了设计的GRNA文库在其他紧密相关的基因组中的应用,并证明对于密切相关的生物体,平均核苷酸同一性(ANI)> 95%> 95%的文库可能是相关的。可以通过https://grna.jgi.doe.gov访问GRNA-Seqret Web应用程序管道。源代码由免费的软件工具和自定义的Python脚本组成,可在https://bitbucket.org/ berkeleylab/grnadesigner/src/master/master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master/Master访问(https://bitbucket.orgelelab/grnadadadeciendiable of。
对病原体膜镜的耐受性似乎与叶子上的ospecic微生物分类群的发生有关。研究了一个基本鉴定在耐受树上的细菌分离株,研究了它们的分类学分类及其抑制灰烬死病原体的潜力。考试OOgri值揭示了一个单独的物种位置。基于直系同源和标记基因的系统基因分析表明,与物种achromo-clomo-clomo-abter aestuarii一起表明了一个单独的属位置。此外,分析的比率是核苷酸的同一性和基因组比对,表明基因组差异通常观察到或在此内观察到或类间比较。因此,这些研究被认为是新属中的单独物种,或者是schauerellaraxinea gen的单独物种。 11月,sp。nov。提出了类型的菌株B3P038 T(= LMG 33092 T = DSM 115926 T)。此外,重物占菌的物种,如schauerella aestuarii梳子。nov。提出了。在共培养测定中,菌株能够抑制oaH. raxineus菌株的生长。因此,一个官能分析O基因组OS。raxinea b3p038 t揭示了介导oantiungal物质的基因。这种潜力,结合了植物层灰灰树的普遍存在,使这一组变得有趣或接种实验,其目标是以整合方法来控制病原体。对于用途试验,开发了菌株特异性QPCR系统,以建立一种符合能力的方法或监测接种成功。
人工智能辅助蛋白质工程的快速发展推动了生命科学的突破,有望带来众多有益的应用。与此同时,这些新功能为有意或无意地合成编码危险蛋白质的基因提供了新途径,从而带来了潜在的生物安全挑战。核酸合成是人工智能辅助蛋白质工程流程中的关键瓶颈,因为数字设计在此转化为可能产生有害蛋白质的物理指令。因此,面对人工智能带来的新功能,加强生物安全的努力重点之一是加强核酸合成供应商的订单筛选。我们描述了一项多方利益相关者、跨部门的努力,旨在解决生物安全挑战,即使用人工智能驱动的生物设计工具重新配制令人担忧的天然蛋白质,以创建与野生型蛋白质序列同一性较低的合成同源物。我们评估了传统核酸生物安全筛选工具检测这些合成同源物的能力,发现在测试的工具中,并非所有工具都能可靠地检测出这种人工智能重新设计的序列。然而,正如我们报告的那样,我们在项目过程中构建并部署了补丁以提高检测率,最终通过工具的平均检测率为 97% 的合成同源物,这些合成同源物使用计算机指标确定更有可能保留野生型功能。最后,我们就研究和应对日益增加的对抗性人工智能辅助蛋白质工程攻击风险的方法提出了建议,就像我们发现并努力缓解的攻击一样。
摘要这项研究的目的是对来自波兰北部的一个地理位置收获的蜂蜜的全基因组分析和评估细菌分离株的抗菌潜力。总共源自三个蜂蜜样品,总共获得了132个菌株,CFAM的抗菌活性(无细胞后培养培养基)用作菌株选择和详细基因组研究的标准。两个测试的分离株(SZA14和SZA16)被归类为帕拉酸芽孢杆菌,基于其ANI和系统发育分析的相关性,一个分离株(SZB3)为枯草芽孢杆菌。分离株SZA14和SZA16是从相同的蜂蜜样品中收获的,核苷酸同一性为98.96%。已经发现所有三个分离株都是不同抗菌化合物的潜在生产者。二次代谢产物基因组挖掘管道(抗石)鉴定了14个基因簇编码为非核糖体肽合成酶(NRP),Polyketide合酶(PKSS)和核糖体合成的核糖体合成和核糖体合成的,并且是经过转化的肽(Ripps),这些肽是新型替代品的替代品。Bagel4分析揭示了分离株SZA14和SZA16中有九个假定的基因簇(包括两个分离物中存在的六个类似的簇,编码肠球菌NKR-5-3B,Haloduracin-alpha,sonorensin,sonorensin,bottromycin and comx2,comx2,comx2,comx2,comx2,suloduracin-alloduracin- SZB3(能力因子,孢子杀伤因子,枯草脂蛋白A和乙酰肽)。这项研究的结果证实了蜂蜜衍生的芽孢杆菌属。菌株可以被认为是各种抗菌剂的潜在生产者。
灰树对病原体膜镜的耐受性似乎与叶子上特定的微生物分类群的发生有关。研究了一组细菌分离株,主要在耐受树上鉴定出它们的分类分类及其抑制灰烬死病原体的潜力。对OGRI值的检查显示出一个单独的物种位置。基于直系同源和标记基因的系统基因分析表明,与物种Achromo细菌Aestuarii一起表明了一个单独的属位置。此外,对平均核苷酸同一性和基因组比对的比率的分析表明,通常观察到该家族中类型间比较的基因组差异。由于这些研究的结果,菌株被认为代表了新属中的一个独立物种,该物种名称schauerella fraxinea gen。 11月,sp。nov。提出了类型的菌株B3P038 T(= LMG 33092 T = DSM 115926 T)。此外,将Achromobacter aestuarii的物种重新分类为Schauerella aestuarii梳子。nov。提出了。在共培养测定中,菌株能够抑制H. fraxineus菌株的生长。因此,对Fraxinea B3P038 T的基因组的功能分析揭示了介导抗真菌物质产生的基因。这种潜力与耐受灰树的植物层中普遍存在的存在相结合,使该基团有趣地进行接种实验,目的是以综合方法控制病原体。对于将来的现场试验,开发了一种特异性QPCR系统,以建立一种有效的方法来监测接种成功。
摘要 在真核生物中,血红素通过两个硫醚键附着到线粒体细胞色素 c 和 c 1 上,由多亚基细胞色素 c 成熟系统 I 或全细胞色素 c 合成酶 (HCCS) 催化。前者是从线粒体的 α 变形菌祖先遗传而来;后者是一种真核创新,其原核祖先并不明显。HCCS 是真核生物中从头蛋白质创新的少数几个例子之一,但对 HCCS 的结构功能了解有限。独特的是,眼虫原生生物(包括医学上相关的动基体锥虫和利什曼原虫寄生虫)通过单个硫醚键将血红素附着到线粒体 c 型细胞色素上。但该机制尚不清楚,因为缺乏编码与其他分类群中参与细胞色素 c 成熟的蛋白质具有可检测相似性的蛋白质的基因。在这里,通过生物信息学搜索所有含血红素蛋白的动质体中保守的蛋白质,鉴定出动质体细胞色素 c 合成酶 (KCCS),我们发现它是必需的和线粒体的,能催化血红素附着到锥虫细胞色素 c 上。KCCS 与其他蛋白质没有序列同一性,除了四个短基序内的轻微相似性表明与 HCCS 相关。因此,KCCS 为研究真核细胞色素 c 成熟提供了一种新的资源,可能具有更广泛的相关性,因为人类 HCCS 的突变会导致疾病。此外,与许多其他真核生物相比,眼虫的许多线粒体生物化学例子都不同;因此,KCCS 的鉴定为进化分化的原生生物群体中极端、不寻常的线粒体生物化学提供了另一个典范。
简介:Gal4/UAS 调控的转基因系统文库已被证明是一种强大的遗传系统,可用于识别基因和定义发育途径。该系统提供了宝贵的见解,强调了动物和人类之间的进化保守性。目标:本研究的目的是克隆、表达和表征 UbiA 基因。该研究提出了一种高效的基因克隆方法,使用 UbiA -pcDNA3 基因作为哺乳动物克隆的模型。然后将这些基因整合到果蝇的 PUAST 载体中,这是一种常用于生产重组蛋白的表达载体和真核细胞系统。材料和方法:从人细胞中分离 UbiA,并合成互补 DNA。根据 UbiA 基因序列设计寡核苷酸引物对,分别在正向和反向引物的 5' 端加入 XhoI 和 Xbal 限制位点。然后通过 PCR 扩增 UbiA 基因,克隆到 pcDNA3 质粒中,并对得到的重组质粒进行测序。随后将该基因亚克隆到PUAST载体中,在真核细胞系统中S2细胞中表达,通过Western印迹技术进行蛋白测定和验证。结果:通过菌落PCR和酶切验证UbiA基因克隆到PUAST载体中,通过酶切和基因测序验证克隆和亚克隆技术。克隆的UbiA基因与同源基因的同一性为99%。Western印迹结果表明纯化的蛋白为一条60kDa的单条带。结论:利用PUAST载体提供的真核表达系统可以实现更多UbiA基因的蛋白合成,该技术已被证明是一个合适的平台,可用于治疗学、药理学和疫苗开发等各种应用。
摘要 奇异变形杆菌是一种革兰氏阴性细菌,以其独特的群集运动能力和尿素酶活性而闻名。之前对四种菌株的蛋白质组学报告假设,与其他革兰氏阴性细菌不同,奇异变形杆菌可能不会表现出基因含量的显著种内变异。然而,目前还没有对来自各种来源的大量奇异变形杆菌基因组进行全面分析以支持或反驳这一假设。我们对 2,060 个变形杆菌基因组进行了比较基因组分析。我们对从美国三家大型学术医疗中心的临床标本中回收的 893 个分离株的基因组进行了测序,结合了来自 NCBI Assembly 的 1,006 个基因组和从公共域中的 Illumina 读取中组装的 161 个基因组。我们使用平均核苷酸同一性 (ANI) 来划分物种和亚种,使用核心基因组系统发育分析来识别高度相关的 P. mirabilis 基因组簇,并使用全基因组注释来识别模型 P. mirabilis 菌株 HI4320 中不存在的感兴趣基因。在我们的队列中,Proteus 由 10 个已命名的物种和 5 个未表征的基因组物种组成。P. mirabilis 可细分为三个亚种;亚种 1 占所有基因组的 96.7% (1,822/1,883)。P. mirabilis 全基因组包括 HI4320 之外的 15,399 个基因,其中 34.3% (5,282/15,399) 没有推定的指定功能。亚种 1 由几个高度相关的克隆群组成。编码假定面向细胞外的蛋白质的噬菌体和基因簇与克隆群相关。在泛基因组中可以识别出模型菌株 P. mirabilis HI4320 中不存在但与已知毒力相关操纵子具有同源性的未知基因。
猪繁殖与呼吸综合征 (PRRS) 是最重要的猪病之一,造成全球巨大的经济损失。病原体 PRRS 病毒 (PRRSV) 是一种有包膜的单链正义 RNA 病毒,与马动脉炎病毒 (EAV)、小鼠乳酸脱氢酶升高病毒 (LDV) 和猿猴出血热病毒 (SHFV) 一起被归类为动脉炎病毒科、动脉炎病毒属、Variarterivirinae 亚科。其基因组长度约为 15 kb,包含至少 11 个开放阅读框 (ORF),具有 5' 帽和 3' 多聚腺苷酸尾 (1-3)。约占基因组三分之二的ORF1a和ORF1b编码非结构蛋白(nsp1~12),具有蛋白酶、复制酶和调控宿主细胞基因表达等功能,负责病毒RNA的合成( 4 )。基因组3’末端的ORF2~7编码结构蛋白,包括糖蛋白2(GP2)、GP3、GP4、GP5、包膜蛋白(E)、基质蛋白(M)、核衣壳蛋白(N),由一系列亚基因组RNA表达( 5 )。由于PRRSV RNA依赖性RNA聚合酶(RdRp)缺乏校对能力,病毒基因组极易发生突变和重组,导致世界范围内出现新的PRRSV分离株( 6 )。目前,PRRSV 可分为两个种:PRRSV-1(欧洲基因型,Betaarterivirus suid 1)和 PRRSV-2(北美基因型,Betaarterivirus suid 2)。两个种均表现出很高的遗传多样性,核苷酸序列同一性约为 60%,每个种可进一步分为多个分支、亚株或谱系。在中国,优势毒株为 PRRSV-2,其高致病性变异株的爆发引起养猪业的担忧(7)。PRRSV 感染可导致母猪严重繁殖障碍,并使各年龄段的猪患上呼吸道疾病,并常导致继发性细菌感染(如副猪嗜血杆菌和猪链球菌),临床表现更严重,死亡率更高(8)。